Magnetic Navigation of Artificial Bacteria Flagella in Blood and Water

Lucas Amoudruz
Petros Koumoutsakos

Computational Science and Engineering Lab
Artificial Microswimmers

Cargo Transport

Micro-manipulation

Assisted Fertilization

Targeted Drug Delivery

Outline

1. Independent Control and Path Planning of artificial bacterial flagella

2. Artificial bacterial flagella swimming in blood
Artificial Bacterial Flagella (ABF)

Re \approx 10^{-4} \ll 1 \Rightarrow \text{Stokes flow.}

\text{Magnetic torque: } T = m \times B

\begin{align*}
\dot{q} &= \frac{1}{2} q \otimes \hat{\Omega}, \\
\dot{x} &= V, \\
V^B &= \mathcal{B} T^B, \\
\Omega^B &= \mathcal{C} T^B.
\end{align*}

ODE model

\[
\begin{bmatrix}
V^B \\
\Omega^B
\end{bmatrix} =
\begin{bmatrix}
A & B \\
B & C
\end{bmatrix}
\begin{bmatrix}
F^B \\
T^B
\end{bmatrix}
\]
Different geometries allow independent control

The geometry governs the response to the rotation frequency of the magnetic field.
Swimming different distances along a direction

Constraint: All swimmers are subjected to the same magnetic field

Velocity matrix: $U_{ij} = v_i(\omega_{c,j})$

(signed) distance made by swimmer i: $d_i = \sum_j U_{ij} t_j s_j = U_{ij} b_j$

where $s_j = -1$ (clockwise) or $s_j = +1$ (anti-clockwise)

$\Rightarrow b = U^{-1}d$
Gathering swimmers to a target

In 3 dimensions: 3 steps to reach the target

1. Gather on a plane
2. Gather on a line
3. Gather at the target
Independent control in free space
Reinforcement Learning

State
- positions $x - x_G$
- orientations q

Policy

Reward
$$r_t = \sum_{i=1}^{n_b} \left(\| x_i(t-1) - x^G_i \|_2^2 - \| x_i(t) - x^G_i \|_2^2 - K \Delta t \right)$$
Terminal reward has bonus K_f
if $\| x_i(T) - x^G_i \|_2 \leq L_{\text{max}}$

Action
- Magnetic field frequency of rotation ω
- Magnetic field orientation

Environment

Initial conditions
Independent control in free space: RL

![Graphs showing analytic and RL results](image-url)
Independent control with a background flow

Taylor-Green stationary flow

\[\mathbf{u}_\infty(\mathbf{r}) = \begin{bmatrix} A \cos ax \sin by \sin cz \\ B \sin ax \cos by \sin cz \\ C \sin ax \sin by \cos cz \end{bmatrix} \]
Outline

1. Independent Control and Path Planning of artificial bacterial flagella

2. Artificial bacterial flagella swimming in blood
Blood Model

Bending Energy

\[E_b = 2\kappa_b \oint (H - H_0)^2 \, dA \]

Area and Volume penalization

\[E_A = k_A \frac{(A - A_0)^2}{A_0}, \quad E_V = k_V \frac{(V - V_0)^2}{V_0} \]

Dissipation forces

\[\mathbf{f}_i^{\text{visc}} = - \sum_j \gamma \left(\mathbf{v}_{ij} \cdot \mathbf{e}_{ij} \right) \mathbf{e}_{ij} \]

Shear Energy

\[E_s = \frac{K_a}{2} \oint (a^2 + a_3a^3 + a_4a^4) \, dA_0 + \mu \oint (\beta + b_1a\beta + b_2\beta^2) \, dA_0 \]

with respect to stress-free shape:

Solvent Model

Newton motion

\[\ddot{r}_i = v_i, \]

\[\dot{v}_i = \frac{1}{m_i} f_i, \]

Bounce Back on the membrane

\[\mathbf{v}(t + dt) = 2 \mathbf{v}_{RBC}(t_{collision}) - \mathbf{v}(t) \]

Dissipative Particle Dynamics interactions

\[f^C_{ij} = a \nu \left(r_{ij} \right) \mathbf{e}_{ij}, \]

\[f^D_{ij} = -\gamma \nu_D \left(r_{ij} \right) \left(\mathbf{e}_{ij} \cdot \mathbf{v}_{ij} \right) \mathbf{e}_{ij}, \]

\[f^R_{ij} = \sigma_{ij} \nu_R \left(r_{ij} \right) \mathbf{e}_{ij}. \]

- **hydrostatic pressure**
- **viscosity**
- **fluctuations**
ABFs swimming in blood

Ht = 10\%

Ht = 20\%

ABFs swim faster at higher hematocrit
Summary

• Reinforcement learning is a good tool for independent control of multiple swimmers under a uniform magnetic field.

• Artificial bacterial flagella can navigate in blood efficiently if the magnetic torque is high enough.

• Opens the road to optimize the design of single and swarms of swimmers.