
High Performance Computing for
Science and Engineering II

Spring semester 2020P. Koumoutsakos
ETH Zentrum, CLT E 13
CH-8092 Zürich

Set 2 - MPI Topologies and Datatypes
Issued: March 09, 2020

Due Date: March 23, 2020 08:00am

The skeleton codes for this homework are located in the gitlab repository: https://gitlab.
ethz.ch/hpcse20/exercise.

Question 1: Wave Equation (40 points)
The wave equation is presented below

∂2u

∂t2
− c2

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
= 0 (1)

and it is often encountered in fluid dynamics or electromagnetics simulations. We are interested
in solving eq. 1 for the following set of initial conditions

u(0, x, y, z) = f(x, y, z),

∂u

∂t
(0, x, y, z) = 0,

(2)

where
f(x, y, z) = f(r) = e−10r2

with r =
√

(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2. We assume c = 1, a uniform mesh of Ntot ×
Ntot × Ntot grid points and a cubic domain [0, 1] × [0, 1] × [0, 1]. Furthermore, we assume
periodic boundary conditions, i.e.

u(t, 0, y, z) = u(t, 1, y, z),

u(t, x, 0, z) = u(t, x, 1, z),

u(t, x, y, 0) = u(t, x, y, 1).

(3)

In order to discretize eq.1 we apply a second order centered finite differences scheme in space
and time. The discretized version of eq.1 is given below

un+1
i,j,k = 2un

i,j,k−un−1
i,j,k+c2

∆t2

h2
(un

i+1,j,k+un
i−1,j,k+un

i,j+1,k+un
i,j−1,k+un

i,j,k+1+un
i,j,k−1−6un

i,j), (4)

where un
i,j,k = u(n∆t, (i + 1

2
)h, (j + 1

2
)h, (k + 1

2
)h) is the function evaluation and h = 1

Ntot
is

the equidistant grid spacing.

1

https://gitlab.ethz.ch/hpcse20/exercise
https://gitlab.ethz.ch/hpcse20/exercise


Figure 1: Domain decomposition of unit cube for 8 MPI ranks, s = 2 (left) and exchange
of faces between neighbouring ranks (right).

You are given a parallel skeleton code that solves eq. 1 using eq. 4. The problem domain (unit
cube) is decomposed into smaller, equal cubes of size N ×N ×N (grid points). Each MPI rank
operates on one of those cubes, which implies that the total number of ranks is s3 , s ∈ N+.
For an illustration see fig. 1, left.

Neighbouring ranks exchange cell data on the faces of their cubes at every time-step. More
specifically, in order to apply eq. 4 next to a rank’s boundary, it is necessary to receive a face
of N ×N points from a neighbouring rank, see fig. 1, right.

a) A Cartesian MPI topology is suitable for this particular problem, as it can automatically
compute the neighbours of every rank. Replace the complicated neighbour calculations in
the skeleton code with a Cartesian MPI topology.

b) In order to exchange data among processes, a tedious process is followed in the skeleton
code: Contiguous send buffers are first allocated, then data is manually collected and packed,
before it is sent. Receive buffers are also allocated and after communication is complete data
is manually unpacked and stored to the right location, before the computation is resumed.
All this can be avoided if custom MPI datatypes are used. Define custom MPI datatypes
(hint: use MPI_Type_create_subarray) to send faces between processes and replace the
previously described procedure.

c) Now that your code is using a Cartesian topology, change your code in order to simulate a

2



non-periodic problem with Dirichlet boundary conditions

u(t, 0, y, z) = f(0, y, z)

u(t, 1, y, z) = f(1, y, z)

u(t, x, 0, z) = f(x, 0, z)

u(t, x, 1, z) = f(x, 1, z)

u(t, x, y, 0) = f(x, y, 0)

u(t, x, y, 1) = f(x, y, 1)

Please consult the README file that is provided with the code for compilation instructions and
further information.

3



Question 2: Cannon’s algorithm (10 points)
Cannon’s algorithm1 is a parallel algorithm for computing the product of two dense square
matrices C = A×B in a series of

√
p steps, where p is the number of ranks. Each rank owns a

square sub-block of C and local sub-blocks of A and B. Each step rotates sub-blocks Aij and
Bij along rows and columns of the 2D (i, j) processor geometry and computes a partial matrix
product using the CBLAS dgemm operation to update its local portion (Ci,j+ = Ai,j × Bi,j),
and then shift its submatrices in a ring-like fashion, as shown in Fig. 2.

Figure 2: Ring-like communication topology used in Cannon’s algorithm. Each square
represents an MPI rank, and their position indicates their i,j submatrix coordinates. At
each step, ranks compute Ci,j+ = Ai,j × Bi,j and then shift their current Ai,j submatrix
downwards Bi,j submatrix leftwards.

In this exercise, you are given a skeleton code that already implements Cannon’s algorithm for
matrix multiplication. However, the MPI topology is determined manually. This effort requires
many lines of code and is bug-prone. Your task is to improve the code, using the advanced MPI
tools you have seen in class.

a) Modify the code to use a Cartesian topology that automatically determines the neighbors
of each MPI rank. (Hint: You may want to investigate whether specifying periodic grids is
useful in this case).

b) Use a custom MPI Datatype to send and receive submatrices between ranks (Hint: Be-
fore you start, think about what type of MPI custom datatype would suffice in this case:
contiguous, vector, or struct?).

1https://people.eecs.berkeley.edu/~demmel/cs267/lecture11/lecture11.html

4

https://people.eecs.berkeley.edu/~demmel/cs267/lecture11/lecture11.html


Question 3: Send and receive custom structs (10 points)
In this question you are asked to implement a custom MPI Datatype that allows two ranks to
exchange different datatypes through a single message. One way to achieve this is to collect all
datatypes to a struct, as seen below.

1 struct particle {
2 int id;
3 double x[3];
4 bool state;
5 double gamma;
6 };

You will only need to use two ranks; the goal is for rank 0 to successfully send the above struct
to rank 1. Please refer to the provided skeleton code for more details.

Guidelines for reports submissions:

• Archive your source code (e.g.: .tar, .rar, .zip) and submit it via Moodle until March 23,
2020, 08:00am.

5


