Korali
High-performance framework for Bayesian uncertainty quantification and optimization

13.12.2019 - CSCS Lugano
Dr. Sergio Martin
Why Uncertainty Quantification

Medicine: Designing better drugs and treatments for cancer patients.

Measurements

- measurements
- drug administration

Robust Predictions

- measurements
- expected prediction
- 95% credible interval
- 99% credible interval

Why Optimization

Improving medical devices for diagnostics.

Methodology: Bayesian Inference

Experimental Data (i.e., Physical Observations)

Computational Model (e.g., MPI-Based hydrodynamics solver)

Statistical Assumptions (e.g., Model parameters)

\[d = f(x | \theta) + \epsilon \]
\[\epsilon \sim \mathcal{N}(0, \sigma_n) \]

Applying Bayes’ Theorem

\[p(\theta | d) = \frac{p(d | \theta) p(\theta)}{p(d)} \]

Posterior Distribution of Parameters

Bayesian Inference: Evidence-based knowledge about the physical reality.
Currently at CSELab @ ETH Zürich

Physical Model
Row of two posts with periodic boundary conditions.

Computational Model
Mirheo: State-of-the-Art GPU-based microfluidics solver.

Statistical Model
Optimization of post configuration over ~50 RBC types.
We need an extreme-Scale UQ/O Framework

Computational Demands Estimation:

GPU-Time per Evaluation: \(~7\) hours
50 Optimization Experiments \times 400\ Evaluations
= 60,000 Model Evaluations

Total usage: \(~140,000\) Node Hours

This represents 100% Piz Daint for a whole day!
State of the art UQ/Opt Libraries

<table>
<thead>
<tr>
<th>Software</th>
<th>Optimization</th>
<th>Bayesian Inference</th>
<th>Parallelism</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>APT-MCMC</td>
<td>no</td>
<td>yes</td>
<td>Local (Thread-based)</td>
<td>C++</td>
</tr>
<tr>
<td>BCM</td>
<td>no</td>
<td>yes</td>
<td>Local (Thread-based)</td>
<td>C++</td>
</tr>
<tr>
<td>EasyVVUQ</td>
<td>no</td>
<td>yes</td>
<td>Fork-Join Concurrency</td>
<td>Python</td>
</tr>
<tr>
<td>GAMBIT</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>C++</td>
</tr>
<tr>
<td>PSUADE</td>
<td>yes</td>
<td>yes</td>
<td>Job-Scheduler Concurrency</td>
<td>C++</td>
</tr>
<tr>
<td>Stan</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>C++</td>
</tr>
<tr>
<td>UQLab</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>MATLAB</td>
</tr>
</tbody>
</table>

No existing libraries offer nor have demonstrated:
- Seamless Integration with MPI/CUDA Computational Models
- Efficient execution at extreme scales (thousands of nodes).
The Korali Framework

Mission:
Develop an UQ and optimization framework for extreme-scale studies.

Motivation:
● Ensure a seamless integration with parallel/distributed computational models.
● Maximize node usage.
● Restore jobs in case of failure with minimal loss of progress.
● Highly documented, easy to use, and adopted by the wider community.

About the Project:
● Development started on early 2019.
● Programmed with C++ and Python.
● Open-Source (github)
Bayesian Inference with Korali (I)

Given:
A square metal plate with 3 sources of heat underneath it.

We have: ~10 temperature measurements at different locations

Can we infer the (x,y) locations of the 3 heat sources?
Bayesian Inference with Korali (II)

To use Korali, users define an **Experiment**.

Experiment

Model:
2D Heat Equation (MPI)

Problem:
Parameter Inference

Solver:
Sampler

Likelihood Probability Distributions

Heat Source 1

Heat Source 2

Heat Source 3
Example: Sampling Parameter Probability Distribution.
Example: Parameter Optimization.
Korali’s 7 Design Goals

+ **Software Engineering Goals**
 + Usability
 + Extensibility
 + Self-Enforced Engineering

+ **High-Performance Goals**
 + Heterogeneous Model Support
 + Scalable Distributed Sampling
 + Self-Enforced Fault Tolerance
 + Efficiency at extreme scale.
Usability

Approach: We use a **descriptive** interface. Specifies the **what**, not the **how**.

```python
from myModels import myModel
e = korali.Experiment()

# Configuring problem
e["Problem"]["Type"] = "Evaluation/Direct"
e["Problem"]["Objective Function"] = myModel

e["Variables"][0]["Name"] = "Mu"
e["Variables"][0]["Minimum"] = 0.0
e["Variables"][0]["Maximum"] = 100000.0

e["Variables"][1]["Name"] = "Sigma"
e["Variables"][1]["Minimum"] = 0.0
e["Variables"][1]["Maximum"] = 100000.0

# Configuring Solver
e["Solver"]["Type"] = "Sample/MCMC"
e["Solver"]["Population Size"] = 3
e["Solver"]["Burn In"] = 5
e["Solver"]["Max Samples"] = 10000

korali.run(e)
```

Minimal programming knowledge required.

No function calls used, other than `run()`

User does not need to know how Korali operates.

Only describe the innate characteristics of the problem.

Independent from implementation.

This same interface could be used by other libs.

Mostly Language-independent.

Add semicolons for C++ or load from config file.
Korali’s 7 Design Goals

+ **Software Engineering Goals**
 + Usability
 + Extensibility
 + Self-Enforced Engineering

+ **High-Performance Goals**
 + Heterogeneous Model Support
 + Scalable Distributed Sampling
 + Self-Enforced Fault Tolerance
 + Efficiency at extreme scale.
Korali Modular Design

Three problem families
Total: 8 different problem types.

Two solver families
Total: 8 different solver methods.

Several more modules are currently in development.
Extending Korali

Anyone can add a new solver or problem into Korali.
+ Allow users to develop and test new methods at scale.
+ Create a user community that develops and extends Korali organically.

+ **Requirements:** Basic object-based C++ knowledge.
+ **Strategy:** Plug-and-Play (automatic module detection).

Example: Adding a new optimizer.

/solvers/optimizer/CMA-ES
 /CCMA-ES
 /LM-CMA-ES
 /DEA
 /Rprop
 /myOptimizer

/myOptimizer._hpp
 Defines the myOptimizer class.
 Inherits responsibilities from the parent (optimizer) class

/myOptimizer._cpp
 Defines how this class satisfies these responsibilities

/myOptimizer.config
 Specifies and documents user-configurable settings
 Uses JSON (JavaScript Object Notation) format.
Korali’s 7 Design Goals

+ **Software Engineering Goals**
 + Usability
 + Extensibility
 + Self-Enforced Engineering

+ **High-Performance Goals**
 + Heterogeneous Model Support
 + Scalable Distributed Sampling
 + Self-Enforced Fault Tolerance
 + Efficiency at extreme scale.
We want Korali to be community-driven. Therefore... We need to **enforce** good SW practices systematically.

1) Every configuration item **shall** be documented.

```
/myOptimizer.config
```

```
"Name": [ "Population Size" ]
"Type": "size_t"
"Description": "Specifies the number of samples to evaluate per generation..."

"Name": [ "Mu Value" ]
"Default": "32"
"Type": "size_t"
"Description": "Number of samples used to update the covariance matrix"
2) Every new module needs a tutorial.

/tutorial/a1-myOptimizer/run-myOptimizer.py
/tutorial/a1-myOptimizer/README.md

A.10 - Optimizing a problem with MyOptimizer

In this tutorial we show how to optimize and sample the posterior distribution of a Bayesian inference problem.

**Problem Setup**

In this example we will solve the inverse problem of estimating the Variables of a linear model using noisy data. We consider the computational model,

\[ f(x; \theta) = \theta_0 + \theta_1 x, \]

for \( x \in \mathbb{R} \). We assume the following error model,

\[ y = f(x; \theta) + \varepsilon, \]

with \( \varepsilon \) a random variable that follows normal distribution with zero mean and standard deviation. This assumption leads to the likelihood function,

\[ p(y|\varphi, x) = \mathcal{N}(y | f(x; \theta), \sigma^2). \]
3) Korali automatically converts all tutorials into **CircleCI** regression tests:

![Test Collection Table]

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression Test</td>
<td>REG-000</td>
<td>Check for a correct installation of Korali and its modules.</td>
</tr>
<tr>
<td>Regression Test</td>
<td>REG-001</td>
<td>Re-run all example applications for basic sanity check.</td>
</tr>
<tr>
<td>Regression Test</td>
<td>REG-002</td>
<td>Run the korali plotter for all example application results.</td>
</tr>
<tr>
<td>Regression Test</td>
<td>REG-003</td>
<td>Test correct execution of solvers with non 0815 parametrization.</td>
</tr>
<tr>
<td>Regression Test</td>
<td>REG-004</td>
<td>Run the korali plotter for all example application results.</td>
</tr>
</tbody>
</table>

All tests **must pass** before accepting the new module:

![Build Status Table]

<table>
<thead>
<tr>
<th>Status</th>
<th>Branch</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="https://example.com/passed.png" alt="Passed" /></td>
<td>master</td>
<td><a href="https://github.com/cselab/korali/tree/master">https://github.com/cselab/korali/tree/master</a></td>
</tr>
<tr>
<td><img src="https://example.com/passed.png" alt="Passed" /></td>
<td>development</td>
<td><a href="https://github.com/cselab/korali/tree/development">https://github.com/cselab/korali/tree/development</a></td>
</tr>
</tbody>
</table>

![Test Architectures Table]

<table>
<thead>
<tr>
<th>System</th>
<th>Compiler</th>
<th>Python</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debian GNU/Linux 9</td>
<td>gcc version 6.3.0</td>
<td>Python 3.7.3</td>
</tr>
<tr>
<td>macOS 10.13.6 (Darwin 17.7.0)</td>
<td>Apple LLVM version 10.0.1 (clang-1001.0.46.4)</td>
<td>Python 3.7.3</td>
</tr>
</tbody>
</table>
Korali’s 7 Design Goals

+ **Software Engineering Goals**
  + Usability
  + Extensibility
  + Self-Enforced Engineering

+ **High-Performance Goals**
  + Heterogeneous Model Support
  + Scalable Distributed Sampling
  + Self-Enforced Fault Tolerance
  + Efficiency at extreme scale.
Heterogeneous Model Support

Korali exposes multiple "Conduits": ways to run computational models.

+ **Sequential (default):**
  For simple function-based Python/C++ models (e.g., \( f(x) = x^2 \)).

+ **Concurrent:**
  For legacy code or pre-compiled applications (e.g., LAMMPS, Matlab, Fortran).

+ **Distributed:**
  For MPI/UPC++ distributed models (e.g., Mirheo).
Sequential Conduit

Links to the model code and runs the model sequentially via function call:

**Korali Main Process**

- Sample
- Sample
- Sample
- Sample

**Computational Model**

```python
def myModel(sample):
 x = sample["Parameters"][0]
 y = sample["Parameters"][1]
 # ... computation...
 sample["Evaluation"] = result
```

**Korali Application**

```python
e = korali.Experiment()
k = korali.Engine()
...
e["Problem"]["Objective Function"] = myModel
k["Conduit"]["Type"] = "Sequential"
k.run(e)
```

**Running Application**

```
$./myKoraliApp.py
```
Concurrent Conduit

Uses fork/join to create multiple concurrent worker processes.

```
Korali Application

def myModel(sample):
 x = sample["Parameters"][0]
 y = sample["Parameters"][1]
 os.shell.run("srun -n 32 ./myModel" + x + y)
 result = parseResults('ResultFile.out')
 sample["Evaluation"] = result

Computational Model

def myModel(sample):
 x = sample["Parameters"][0]
 y = sample["Parameters"][1]
 os.shell.run("srun -n 32 ./myModel" + x + y)
 result = parseResults('ResultFile.out')
 sample["Evaluation"] = result

Korali Application

e = korali.Experiment()
k = korali.Engine()
...
e["Problem"]["Objective Function"] = myModel
k["Conduit"]["Type"] = "Concurrent"
k["Conduit"]["Concurrent Jobs"] = 4
k.run(e)
```

Running Application

```
$./myKoraliApp.py
```
Distributed Conduit

Links to and runs distributed MPI/UPC++ applications through sub-communicators.

```
def myModel(sample, MPIComm):
 x = sample["Parameters"][0]
 y = sample["Parameters"][1]
 myRank = comm.Get_rank()
 rankCount = comm.Get_size()
 # ... Distributed Computation...
 sample["Evaluation"] = result
```

Computational Model

```
e = korali.Experiment()
k = korali.Engine()
...
e["Problem"]["Objective Function"] = myModel
k["Conduit"]["Type"] = "Distributed"
k["Conduit"]["Backend"] = "MPI"
k["Conduit"]["Ranks Per Sample"] = 4
k.run(e)
```

Korali Application

```
$ mpirun -n 17 ./myKoraliApp.py
```
Korali’s 7 Design Goals

+ **Software Engineering Goals**
  + Usability
  + Extensibility
  + Self-Enforced Engineering

+ **High-Performance Goals**
  + Heterogeneous Model Support
  + Scalable Distributed Sampling
  + Self-Enforced Fault Tolerance
  + Efficiency at extreme scale.
Korali’s Scalable Sampler

Korali Engine

Supercomputer

Experiment
- Start Experiment
- Run Next Generation

Solver
- Generate Samples
- Preprocess Samples
- Update State
- Postprocess Results

Problem

Collect Results

Distribute Samples

Worker 0
- Rank 0 (Core 0)
- Idle

Worker 1
- Rank 0 (Core 2)
- Rank 1 (Core 3)
- Idle

Worker 2
- Rank 0 (Core 4)
- Rank 1 (Core 5)
- Idle

Worker N
- Rank 0 (Core M-2)
- Rank 1 (Core M-1)
- Idle
Scheduling Multiple Experiments

Korali can schedule Multiple Simultaneous Experiments
Korali’s 7 Design Goals

+ **Software Engineering Goals**
  + Usability
  + Extensibility
  + Self-Enforced Engineering

+ **High-Performance Goals**
  + Heterogeneous Model Support
  + Scalable Distributed Sampling
  + Self-Enforced Fault Tolerance
  + Efficiency at extreme scale.
Self-Enforced Fault Tolerance (I)

Korali saves the entire state of the experiment(s) at every generation.

Korali can resume any Solver / Problem / Conduit combination. How? Enforced Serialization
Enforced Serialization (I)

Class members in Korali are defined in the config file.

Class Declaration and Methods Only

Algorithm-relevant methods

Benefit: Collaborating users need not worry about serialization.
Korali’s 7 Design Goals

+ **Software Engineering Goals**
  + Usability
  + Extensibility
  + Self-Enforced Engineering

+ **High-Performance Goals**
  + Heterogeneous Model Support
  + Scalable Distributed Sampling
  + Self-Enforced Fault Tolerance
  + Efficiency at extreme scale.
Korali Benchmark

**Study:** Red Blood Cell - Strain and bending energy inference

**Platform:** CSCS Piz Daint (GPU)
- **Processor:** Intel® Xeon® E5-2690 v3 @ 2.60GHz
- **GPU:** NVIDIA® Tesla® P100 16GB DRAM

**Method:** Single-Parameter Bayesian Inference with TMCMC

**Computational Model:** RBC Stretching
- Mirheo, 1 GPU x ~15 minutes per sample.

**Scaling:** Weak Scaling (1 Sample, 1 Node)
- From 256 to 4096 Nodes (71% of GPU Piz Daint)

Korali Benchmark (Results)

Korali introduces negligible scheduling or method overheads.

Model Imbalance can reduce efficiency

Korali introduces negligible scheduling or method overheads.
Execution Timeline (4096 Nodes)

Imbalance causes loss in efficiency:
Addressing Model Imbalance with Korali

**Study:** Red Blood Cell - Membrane viscosity inference

**Platform:** CSCS Piz Daint (GPU)
  + **Processor:** Intel® Xeon® E5-2690 v3 @ 2.60GHz
  + **GPU:** NVIDIA® Tesla® P100 16GB DRAM

**Method:** Five Inference Experiments with TMCMC
  + 5 Datasets from [Henon 1999] and [Hochmuth 1979]
  + Apply Hierarchical Bayesian Inference on the results

**Computational Model:** RBC Relaxation
  + Mirheo, 1 GPU x ~45 minutes per sample.

**Scale:** Single 512-node run.

---


Execution Timeline (512 Nodes)

Running Experiments Sequentially:

Average Efficiency 73.9%

Running Experiments Dynamically:

Average Efficiency 97.8%
Scheduling multiple experiments in a job realizes sustained efficiency even with model imbalance.

[ We are preparing these results for publication. ]
Next Steps (I)

Applying Korali to the Hydrodynamic Cell Sorting Study

Current Situation:
Computational demands exceed our budget.

Opportunities for improvement:
+ High Model Imbalance (~70%).
+ Early detection of failing samples (no separation).

Goal: ~140,000 Node Hours → ~60,000 Node Hours
Extend Korali’s Scope:

- Reinforcement Learning
- Surrogate Modelling
- Gaussian Processes (Interpolation)
- Optimal Sensor Placement (Robotics)
Visit our Website: cse-lab.ethz.ch/korali
Source Code: github.com/cselab/korali
Twitter: twitter.com/ethkorali

The Korali Team:

- George Arampatzis
  Postdoc @ ETHZ

- Sergio Martin
  Postdoc @ ETHZ

- Daniel Wälchli
  PhD Student @ ETHZ

- Prof. Petros Koumoutsakos
  Principal Investigator

Student Assistants:
- Mark Martori (MSc Student @ UZH)
- Susanne Keller (MSc Student @ ETHZ)