Hierarchical Bayesian Uncertainty Quantification for a Red Blood Cell Model

George Arampatzis

Computational Science and Engineering Lab
ETH Zürich
With:

Athena Economides
Dmitry Alexeev
Sergey Litvinov
Lucas Amoudruz
Lina Kulakova
Petros Koumoutsakos

Costas Papadimitriou - University of Thessaly
Blood flow & NP in realistic vasculatures
(with Ferrari Group, Houston)

- Understanding of transport oncophysics.
- Optimization of drug delivery.

Experimental data for vasculature.

Vasculature reconstruction & Simulation.
Microfluidic isolation of CTC (with Toner Group, Harvard)

Circulating tumor cells: approaches to isolation and characterization

Min Yu,1,2 Shannon Stott,2 Mehmet Toner,1 Shyamala Maheswaran,2 and Daniel A. Haber1,2

1Howard Hughes Medical Institute; 2Massachusetts General Hospital Cancer Center, and
1Center for Engineering in Medicine, Harvard Medical School, Boston, MA 02129

CTC detection → High throughput - mL Samples
Blood modeling

Basic constituents of blood:
- red blood cells
- plasma

Plasma
- 95% water

 modeling requirements:
- incompressible fluid
- hydrodynamic behavior (mass & momentum conservation)

Red Blood Cells
- biconcave shape
- viscoelastic membrane
- constant area & volume

Particle-based methods:
- Coarse-grained model for RBC membrane
- Dissipative Particle Dynamics for solvent

- Prescribe forces between RBC particles.
- Calibration of parameters to best fit experiments.
Most widely used RBC model

\[U = U_{\text{in-plane}} + U_{\text{bending}} + U_{\text{area}} + U_{\text{volume}} \]

\[U_{\text{in-plane}} = \sum_{j=1}^{N_s} \left[\frac{k_{p_j} \left(3x_j^2 - 2x_j \right)}{4(1 - x_j(x_0))} + \frac{k_{b_j}}{l_j} \right] \]

\[U_{\text{bending}} = k_b \sum_{j=1}^{N_s} \left[1 - \cos \theta_j \right] \]

\[U_{\text{area}} = \frac{k_a (A - A_0)^2}{2A_0} + \sum_{j=1}^{N_s} \frac{k_d (A_j - A_0)^2}{2A_0} \]

\[U_{\text{volume}} = \frac{k_v (V - V_0)^2}{2V_0} \]

Addition of viscous diffusion:

\[F_{m,ij}^D = -\nabla \cdot (v_{ij} \cdot e_{ij}) e_{ij} \]
Most widely used RBC model

\[U = U_{\text{in-plane}} + U_{\text{bending}} + U_{\text{area}} + U_{\text{volume}} \]

where:
- \(U_{\text{in-plane}} \) is the in-plane membrane potential.
- \(U_{\text{bending}} \) is the bending potential.
- \(U_{\text{area}} \) is the area potential.
- \(U_{\text{volume}} \) is the volume potential.

Addition of viscous diffusion:
\[F_{m,ij}^D = -\gamma^C (v_{ij} \cdot e_{ij}) e_{ij} \]

Theoretical analysis for hexagonal network:
- Approximations to macroscopic material properties.
- Comparison with existing literature / other models.

Linear shear modulus:
\[\mu_0 = \left. \frac{\partial \tau_{xy}}{\partial \gamma} \right|_{\gamma=0} \approx \frac{k_0 \sqrt{3}}{4} \left(\frac{x_0}{2(1-x_0)^3} - \frac{1}{4(1-x_0)^2} + \frac{1}{4} \right) \]

Membrane viscosity:
\[\eta_m = \frac{\tau_{xy}}{\dot{\gamma}} \approx \gamma^C \frac{\sqrt{3}}{4} \]

validate that our DPD model for RBC translation across a 4/C15 microfluidic channel is robust against variations in channel geometry introduced during their fabrication.

FIGURE 2. Shape characteristics of RBC traversal across microfluidic channels: (a) experimental (left) and simulated (right) for a 4/C15 microfluidic channel. (b) Comparison of DPD simulation results with experimental data of Puig de Morales et al., "Microfluidics for cell sorting based on their dynamical properties", Biophysical Journal, 2010.

Equilibrium fluctuations

Flow in cylindrical μ-channels

Flow through stenotic channel

Quinn et al., "Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems", Annals of Biomedical Engineering, 2011.

Flow induced shape transitions

Blood viscosity

Model Parameters

We consider the coarse-grained RBC model described in Section 2.1. This model has seven parameters, of which four are directly related to the equilibrium shape of the RBC: the equilibrium-to-maximum spring length (l_0), modulus (μ_0), bending rigidity (κ_b), and ratio of membrane-to-hemoglobin viscosities (η_m/η_{Hb}). The remaining four quantities are the equilibrium-to-maximum spring length, modulus, bending rigidity, and ratio of membrane-to-hemoglobin viscosities.

Table 1

<table>
<thead>
<tr>
<th>Application</th>
<th>T (°C)</th>
<th>μ_0 (µN/m)</th>
<th>κ_b (10$^{-19}$ J)</th>
<th>η_m/η_{Hb}</th>
</tr>
</thead>
<tbody>
<tr>
<td>single RBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stretching20</td>
<td>23</td>
<td>6.30</td>
<td>2.40</td>
<td>—</td>
</tr>
<tr>
<td>TTC and shear flow19</td>
<td>23</td>
<td>6.30</td>
<td>4.80</td>
<td>4.4</td>
</tr>
<tr>
<td>Cylindrical μ-channel flow24</td>
<td>37</td>
<td>4.83</td>
<td>3.00</td>
<td>n.a.</td>
</tr>
<tr>
<td>Equilibrium70</td>
<td>23</td>
<td>2.42</td>
<td>1.43</td>
<td>22.2</td>
</tr>
<tr>
<td>DLD device34</td>
<td>37</td>
<td>4.83</td>
<td>3.00</td>
<td>n.a.</td>
</tr>
<tr>
<td>Dynamic morphologies in shear44</td>
<td>37</td>
<td>4.83</td>
<td>3.00</td>
<td>n.a.</td>
</tr>
<tr>
<td>Flow-induced shape transitions49</td>
<td>37</td>
<td>4.80</td>
<td>3.00</td>
<td>0</td>
</tr>
<tr>
<td>multiple RBCs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell-free layer21</td>
<td>23</td>
<td>4.59</td>
<td>2.40</td>
<td>18.3</td>
</tr>
<tr>
<td>Pf-malaria biophysics22</td>
<td>37</td>
<td>6.30</td>
<td>2.40</td>
<td>n.a.</td>
</tr>
<tr>
<td>Blood viscosity prediction23</td>
<td>37</td>
<td>4.82</td>
<td>3.00</td>
<td>12.0</td>
</tr>
<tr>
<td>Platelet transport76</td>
<td>27</td>
<td>4.50</td>
<td>2.98</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

Inferred Quantities

Scale: μ_0

Relative strength between RBC energy potentials:

\[
Q_1 = \frac{l_0}{l_{max}} \quad Q_2 = \frac{\mu_0R_0^2}{k_b} \quad Q_3 = \frac{\eta_m}{\eta_{Hb}} \quad Q_4 = \frac{\eta_{Hb}^2}{\mu_0R_0^2\rho}
\]
Bayesian Inference
Bayesian Inference

Data, \(d \) \(\oplus \) Computational Model with Parameters, \(\vartheta \)
\[f(x \mid \vartheta) \]
\(\oplus \) Statistical Assumption connecting \(\vartheta \) and \(d \)
\[p(d \mid \vartheta) \]

\[p(\vartheta \mid d) = \frac{p(d \mid \vartheta) p(\vartheta)}{p(d)} \]

Bayes’ Theorem
Bayesian Inference

Experimental Data

Computational Model

\[d = f(x | \theta) + \epsilon \]

\[\epsilon \sim \mathcal{N}(0, \sigma_n) \]

\[p(\theta_1 | d_1, \mathcal{M}_1) \]
Hierarchical Bayesian Inference

\[p(\theta_1 | d_1, d_2) \]

\[p(\theta_2 | d_2, d_N) \]

\[p(\theta_N | d_1, d_2) \]
Hierarchical Bayesian Inference

\[\psi \]

\[\vartheta \]

\[y_1, y_2, \ldots, y_N \]

\[y_{\text{new}} \]

hyper-parameters, e.g.,

\[\vartheta \sim U(\psi_1, \psi_2) \]
Hierarchical Bayesian Inference

- lost of individual information
- one parameter explains all data
- large uncertainty

- no exchange of information between data
- some data sets may be more informative

- information flows through the hyper-parameters
- uncertainty of individual parameters may be reduced
- the hyper-parameters serve as a data driven prior for future inferences
Hierarchical Bayesian Inference

\[p(\psi | d) \propto p(d | \psi)p(\psi) \]

\[p(d | \psi) = \int p(d, \vartheta | \psi) \, d\vartheta \]

\[= \prod_{i=1}^{N} \int p(d_i | \vartheta_i) p(\vartheta_i | \psi) \, d\vartheta_i \]

\[d = \{d_1, d_2, \ldots, d_N\} \]

prior on hyperparameters \[\cdots \cdots \, p(\psi) \]

prior on model parameters \[\cdots \cdots \, p(\vartheta_i | \psi) \]

likelihood of the data \[\cdots \cdots \, p(y_i | \vartheta_i) \]

\[y_1 \quad \cdots \quad y_i \quad \cdots \quad y_N \]

\[y_i^{\text{new}} \quad \cdots \quad y_N^{\text{new}} \]

\[\vartheta_1 \quad \cdots \quad \vartheta_i \quad \cdots \quad \vartheta_N \]

\[\vartheta_{\text{new}} \]
Surrogate Model
Gaussian Processes

Discretize the parameter space $\vartheta(i), i = 1, \ldots, M$

Run the computational model on $\vartheta(i)$ with input $x(i)$ and get the output $t_M = (t_1, \ldots, t_M)$

Set $D_M = \{t_1, \ldots, t_M, \zeta_1, \ldots, \zeta_M\}$ where $\zeta_i = (x(i), \vartheta(i))$

The prediction t_{M+1} of the GP model for a new ζ_{M+1} given the data D_M is a random variable

$$p(t_{M+1}, D_M) = \mathcal{N}(t_{M+1} | m(D_M), \sigma^2(D_M))$$

$$m(D_M) = k_{M+1}^{\top} C^{-1}_M t_m$$

$$\sigma^2(D_M) = c_{M+1} - k_{M+1}^{\top} C^{-1}_M k_{M+1}$$

$$[k_{M+1}^{\top}]_i = \kappa(\zeta_i, \zeta_{M+1}), \quad i = 1, \ldots, M$$

$$[C]_{i,j} = \kappa(\zeta_i, \zeta_j), \quad i, j = 1, \ldots, M$$

$$c_{M+1} = \kappa(\zeta_{M+1}, \zeta_{M=1})$$
Gaussian Processes: Validation
Results
Design Principles

• **Modularity.** Korali is designed as a completely modular software.
• **Scalability.** We have designed Korali’s problem definition interface to remain agnostic about its execution platform.
• **High-Throughput.** Complete utilisation of the given computational resources.
• **High-Performance.** Supports the execution of parallel (MPI, UPC++) and GPU-based (CUDA) computational models.

G. Arampatzis, S. Martin, D. Wälchli

coming soon in https://github.com/cselab/
Stretching experiment

Experimental Setup

Stretching data sets considered in UQ

Single-level UQ for stretching

\[\sigma_i = (Q_1, Q_2, \mu_0, \sigma_{ax}, \sigma_{tr}), \quad i = 1, 2 \]
Shear flow experiment

Experimental Setup

Shear flow data sets considered in UQ

Shear rate=500/s. $\eta=12$ mPa.s
Shear rate=600/s. $\eta=170$ mPa.s

Tank treading of the membrane is shown by the motion of a Latex marker. The motion is visualized by drawing a connecting line between markers in subsequent pictures. Shear rate=140/s. $\eta=18$ mPa.s

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>symbol (Fig. 2)</th>
<th>Viscosity ratio, λ</th>
<th>data set ID in UQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fischer et al.</td>
<td>1978</td>
<td>○</td>
<td>0.56</td>
<td>d_3</td>
</tr>
<tr>
<td>Fischer</td>
<td>1980</td>
<td>△</td>
<td>0.43</td>
<td>d_4</td>
</tr>
<tr>
<td>Tran-Son-Tay</td>
<td>1983</td>
<td>+</td>
<td>0.50</td>
<td>d_5</td>
</tr>
<tr>
<td>Fischer</td>
<td>2007</td>
<td>◇</td>
<td>0.35</td>
<td>d_6</td>
</tr>
<tr>
<td>Fischer and Korzeniewski</td>
<td>2015</td>
<td>○</td>
<td>0.35</td>
<td>d_7</td>
</tr>
</tbody>
</table>
Single-level UQ for shear flow

\[m_{i,i} = 1, 2 \]

\[\vartheta_i = (Q_{1,i}, Q_{2,i}, \mu_{0,i}, Q_{3,i}, Q_{4,i}, \sigma_{sh,i}) \text{, } i = 3, \ldots, \]

\[p(\vartheta_3 | d_3, M_3) \]

\[p(\vartheta_4 | d_4, M_4) \]

\[p(\vartheta_5 | d_5, M_5) \]

\[p(\vartheta_6 | d_6, M_6) \]

\[p(\vartheta_7 | d_7, M_7) \]
Hierarchical Bayesian Inference for the RBC model

\[\vartheta_i = (Q_{1,i}, Q_{2,i}, \mu_{0,i}, \sigma_{st,i}), \quad i = 1, 2 \]

\[\vartheta_i = (Q_{1,i}, Q_{2,i}, \mu_{0,i}, Q_{3,i}, Q_{4,i}, \sigma_{sh,i}), \quad i = 3, \ldots, 7 \]

\[\vartheta_{\text{new}} = (Q_1, Q_2, \mu_0, Q_3, Q_4, \sigma_{sh}, \sigma_{st}) \]
Hierarchical Bayesian UQ

\[p(\psi | \vec{d}, \mathcal{M}_{HB}) \]

\[p(\mathfrak{g}_{\text{new}} | \hat{d}, \mathcal{M}_{HB}) \]
Model Transferability: Infer for quantity X - Propagate to quantity Y

to stretching

| to TTF |
| to inclination angle |
| to equilibrium shape |

![Graphs showing model transferability](image)

- **Fig. 2.1**: The black dotted line represents the MAP value. The colored areas denote the 99% (blue), 90% (green), 75% (yellow) and 50% (red) quantiles. Circles correspond to the experimental data.

- **Fig. 4.2.1**: The predictions of the single-level stretching models and the hierarchical model for the RBC TTF are shown in the best MAP fit, Bayesian models to stretching and (ii) from the new general parameter distribution of the HB model, (iii) from the new experimental thickness of the RBC at equilibrium, as given by Eq. (new parameter). The colored areas denote the 99% (blue), 90% (green), 75% (yellow) and 50% (red) quantiles. Circles correspond to the experimental data.

- **Fig. 13**: The predictions of the single-level stretching models and the hierarchical model for the RBC TTF are shown in the best MAP fit, Bayesian models to stretching and (ii) from the new general parameter distribution of the HB model, (iii) from the new experimental thickness of the RBC at equilibrium, as given by Eq. (new parameter). The colored areas denote the 99% (blue), 90% (green), 75% (yellow) and 50% (red) quantiles. Circles correspond to the experimental data.

- **Fig. 14**: The predictions of the single-level stretching models and the hierarchical model for the RBC TTF are shown in the best MAP fit, Bayesian models to stretching and (ii) from the new general parameter distribution of the HB model, (iii) from the new experimental thickness of the RBC at equilibrium, as given by Eq. (new parameter). The colored areas denote the 99% (blue), 90% (green), 75% (yellow) and 50% (red) quantiles. Circles correspond to the experimental data.

- **Fig. 21**: The predictions of the single-level stretching models and the hierarchical model for the RBC TTF are shown in the best MAP fit, Bayesian models to stretching and (ii) from the new general parameter distribution of the HB model, (iii) from the new experimental thickness of the RBC at equilibrium, as given by Eq. (new parameter). The colored areas denote the 99% (blue), 90% (green), 75% (yellow) and 50% (red) quantiles. Circles correspond to the experimental data.

- **Fig. 29**: The predictions of the single-level stretching models and the hierarchical model for the RBC TTF are shown in the best MAP fit, Bayesian models to stretching and (ii) from the new general parameter distribution of the HB model, (iii) from the new experimental thickness of the RBC at equilibrium, as given by Eq. (new parameter). The colored areas denote the 99% (blue), 90% (green), 75% (yellow) and 50% (red) quantiles. Circles correspond to the experimental data.
Thank you!