Remember and Forget for Experience Replay

Guido Novati & Petros Koumoutsakos
Computational Science, ETH Zürich
• Off-policy RL with Experience Replay typically alternates:

 Behaviors: $\mu_t(a \mid s)$

 Learner

 Train $\pi^w(a \mid s)$ and/or $Q^w(s, a)$ with Replay Memory

 Agent

 Explore environment $a_t \sim \mu_t(a \mid s_t)$

 Experiences: $\{s_t, r_t, \mu_t, a_t\}$

• Replay behaviors are typically associated with past policy iterations.

• Off-policy RL attempts to estimate on-policy quantities from off-policy data.

 \[E.g. \text{maximize on-policy returns:} \quad J(w) = \mathbb{E}_{t \sim \text{RM}} \left[\frac{\pi^w(a_t \mid s_t)}{\mu_t(a_t \mid s_t)} Q^{\pi^w}(s_t, a_t) \right] \]
Remember and Forget Experience Replay

RL algorithm

1) Which learns a **parameterized policy**.
E.g. DDPG (Lillicrap et al. 2016) trains deterministic policy \(m(s) \) *and adds exploration noise:*

\[
\pi^w(a \mid s) = m^w(s) + \mathcal{N}(0, \sigma^2)
\]

2) With **off-policy gradients estimated by** ER.

\[
g(w) = \mathbb{E}_t \left[\hat{g}(t, w) \right] \quad \text{RM}
\]

E.g. deterministic policy gradient (Silver et al. 2014):

\[
\hat{g}^\text{DPG}(t, w) = \nabla_w m^w(s_t) \nabla_a Q^w(s_t, a) \bigg|_{a=m^w(s_t)}
\]

ReF-ER

1) **Rejects samples** from gradient estimation if importance weight \(\rho_t^w = \pi^w(a_t \mid s_t) / \mu_t(a_t \mid s_t) \) **outside of a trust region.**

2) **Penalizes policy towards training behaviors.**

\[
\hat{g}(t, w) \left\{ \begin{array}{l}
\beta \hat{g}(t, w) - (1 - \beta) \nabla D_{\text{KL}}[\mu_t || \pi^w(\cdot \mid s_t)] \\
-(1 - \beta) \nabla D_{\text{KL}}[\mu_t || \pi^w(\cdot \mid s_t)]
\end{array} \right.
\]

Notes:

- Trust region parameter C can be annealed.
- Coefficient \(\beta \) is iteratively updated to keep a fixed fraction of samples within the trust region.
Results

- We observe: effectively constrained D_{KL}, increased stability and performance.
- At the price of: sometimes slower progress at the beginning of training.

DDPG on OpenAI gym MuJoCo tasks & flow control
Conclusion

GENERAL IMPLICATION:
Off-policy RL benefits from maintaining similarity between policy and training behaviors.

ReF-ER:
• Easy to implement, modular improvement for off-policy RL.
• Aligns on-policy distribution (‘test set’) and replay experiences (‘training set’).
• Brings off-policy RL one step closer to supervised learning.

More info:
• poster: Pacific Ballroom # 50
• paper: https://arxiv.org/abs/1807.05827
• source code: https://github.com/cselab/smarties