A High Performance Computing Framework
for Multiphase, Turbulent Flows
on Structured Grids

Petr Karnakov

Computational Science and Engineering Lab
ETH Zürich
With:

Fabian Wermelinger
Michail Chatzimanolakis
Dr. Sergey Litvinov
Prof. Petros Koumoutsakos
Multiphase flows

Electrochemical cells

- Anode
- Cathode
- O_2
- H_2

[Hashemi 2019]

Pipes

[Bratland 2010]

Bubble column reactors

[wikipedia]
Outline

Numerical model
- new method for curvature estimation
 improving the accuracy at low resolution

Implementation
- blockwise processing with coroutines for modularity

Test cases
- curvature of a sphere
- translating droplet

Applications
- bubble coalescence
- Taylor-Green vortex with bubbles
- plunging jet with air entrainment
Numerical model
Model

Two-phase incompressible flow

- Navier-Stokes equations
 \[\nabla \cdot \mathbf{u} = 0 \]
 \[\rho \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} \right) = -\nabla p + \nabla \cdot \left(\mu (\nabla \mathbf{u} + \nabla \mathbf{u}^T) \right) + \mathbf{f}_\sigma \]

- Advection of volume fraction
 \[\frac{\partial \alpha}{\partial t} + (\mathbf{u} \cdot \nabla)\alpha = 0 \]

- Discretization
 - Finite Volume on Cartesian grid
 - SIMPLE for pressure coupling [Patankar 1979]
 - VOF advection with reconstruction [Aulisa 2007]
 - Linear solvers from Hypre [Falgout 2002]

\[\rho = (1 - \alpha)\rho_1 + \alpha\rho_2 \]
\[\mu = (1 - \alpha)\mu_1 + \alpha\mu_2 \]
Surface tension

• Calculation of surface tension $f_\sigma = \sigma \kappa \mathbf{n}_S \delta_S$
 relies on interface curvature $\kappa = \nabla_S \cdot \mathbf{n}_S$

• Existing methods show poor accuracy at low resolution
 • gradients of volume fraction [Brackbill 1992]
 • level-set [Sussman 1998]
 • height functions [Cummins 2005]
 • generalized height functions [Popinet 2009] with parabolic fit to mixed heights
Piecewise linear interface

Line segments (2D) or polygons (3D) from volume fractions [Aulisa 2007]

- **Volume fraction field**

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.9</td>
<td>0.9</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.6</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Normals as gradients**

 \[\mathbf{n} = -\nabla \alpha \]

- **Lines cutting the cells at given volume fraction**
Proposed method

Estimation of curvature from line segments using particles

1. Line segments

2. Constrained particles
 - fixed distance
 - uniform angle
 \(\Rightarrow \) particles belong to a circle

3. Attraction forces

4. Curvature from equilibrium positions
Proposed method

Evolution of constrained particles

• Constraints are satisfied by parametrization

\[x_i = x_i(p, \phi, \theta) \quad i = 1, \ldots, 5 \]

- \(p \) position of central particle
- \(\phi \) orientation angle
- \(\theta \) bending angle

• Force \(f_i \) attracts \(x_i \) to nearest point on the interface

• Each step applies corrections from projected forces

\[\Delta \phi = \sum_i f_i \cdot \frac{\partial x_i}{\partial \phi} / \sum_i \frac{\partial x_i}{\partial \phi} \cdot \frac{\partial x_i}{\partial \phi} \]

(similar for \(p \) and \(\theta \))
Proposed method

Mean curvature in 3D

- Interface consists of polygons

- Mean curvature is the average over cross-sections normal to the interface

- Cross-section consists of line segments \(\Rightarrow\) problem reduced to 2D
Implementation
Blockwise processing

- Each rank splits its subdomain to cubic blocks
 - cache utilization
 - compute-transfer overlap: communication while computing inner blocks

- Used in Cubism-MPCF [Rossinelli 2013, Wermelinger 2018]
 Multiphase compressible flows
 Gordon Bell prize 2013 for high throughput computation

- Drawback: lack of modularity
Example

- Block processor executes kernels on blocks and calls MPI to exchange ghost cells

- Algorithm 1: one stage
 \[u^{n+1} = AD(u^n) \]

- Algorithm 2: two stages
 \[u^{n+1/2} = A(u^n) \]
 \[u^{n+1} = D(u^{n+1/2}) \]

- Adding communication requires changing the block processor

```java
for (Block b : bb) {
    AD(b);
}
Comm();
```

```java
for (Block b : bb) {
    A(b);
}
Comm();
```

```java
for (Block b : bb) {
    D(b);
}
Comm();
```

Kernels:
- A advection
- D diffusion
- AD advection+diffusion
Coroutines

- Kernels can request communication and suspend
- Universal block processor executes the requests
- Enables modularity
 - kernels control communication
 - allows nested calls

```cpp
void AD(Block b, Queue q) {
    A(b);
    q.RequestComm(b);
    yield;
    D(b);
}
```

```cpp
MPI rank 0
A A
communication
D D
MPI rank 1
A A
communication
D D
```

Queue q;
while (!q.Done()) {
 for (Block b : bb) {
 AD(b, q);
 }
 Comm(q);
}

emulation of coroutines in C++

```cpp
void AD(Block b, Queue q) {
    Stages s(b);
    if (s()) {
        A(b);
        q.RequestComm(b);
    }
    if (s()) {
        D(b);
    }
}
```
Test cases
Curvature of a sphere

- Error in curvature relative to exact value

- Comparison to Basilisk
 generalized height-function method [Popinet 2009] [basilisk.fr]

- Present method
 - more accurate at resolutions below 12 cells
 - error below 10% even with one cell per radius

<table>
<thead>
<tr>
<th>cells per radius</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.59</td>
<td>0.42</td>
</tr>
<tr>
<td>0.84</td>
<td>0.08</td>
</tr>
<tr>
<td>1.19</td>
<td>0.09</td>
</tr>
</tbody>
</table>
Translating droplet

- Uniform initial velocity u_0

- Spurious flow created by inaccuracies in curvature

- Present method
 - lower magnitude of spurious flow at resolutions below 10 cells
 - small droplets act as tracers

\[
\text{We}_{\max} = \frac{2 \rho R}{\sigma} \max |u - u_0|^2
\]

Magnitude of spurious flow in terms of Weber number
Applications
Coalescence of bubbles

- Experiment on near-wall coalescence
- Bubbles grow due to diffusion of dissolved gas
- Simulations reproduce the experiment

Soto ÁM, Maddalena T, Fraters A, Van Der Meer D, Lohse D.
Coalescence of diffusively growing gas bubbles.
Journal of fluid mechanics. 2018
Coalescence of bubbles

coalescence neck

detachment

oscillations
Coalescence of bubbles

present

Basilisk

cells per radius

t = 0.17

9.6

19.2

38.4
Taylor-Green vortex with bubbles

- Periodic domain $[0, 2\pi]^3$
- Initial velocity
 \[u_x = \sin x \cos y \cos z \]
 \[u_y = -\cos x \sin y \cos z \]
 \[u_z = 0 \]
- 890 bubbles, volume fraction 1.4%
- \(\text{Re} = \frac{\rho}{\mu} = 1600 \quad \text{We} = \frac{2\rho R}{\sigma} = 2 \)
- Mesh 256^3 or 384^3
Taylor-Green vortex with bubbles

- Trajectory of one bubble, no change on finer mesh
- Number of bubbles reduces with time due to coalescence
- Coalescence causes fluctuations of dissipation rate

With bubbles

No bubbles

Energy dissipation rate

Number of bubbles

x

t
Plunging jet with air entrainment

Water jet impacts the free surface

- Box width 10 cm
- Free-slip walls
- Jet diameter 6 mm, velocity 4 m/s
- Mesh 256 x 1024 x 256

Visualization by Jean M. Favre (CSCS) with Paraview and NVIDIA VisRTX
1. Liquid jet impact

- large air cavity
- then small bubbles

Visualization by Jean M. Favre (CSCS) with Paraview and NVIDIA VisRTX
2. Stagnation zone

- larger bubbles form due to coalescence

Visualization by Jean M. Favre (CSCS) with Paraview and NVIDIA VisRTX
3. Rising bubbles

- larger bubbles are elliptical and follow zigzag trajectory

Visualization by Jean M. Favre (CSCS) with Paraview and NVIDIA VisRTX
Plunging jet with air entrainment

- Equilibration of mixture kinetic energy
- Axial concentration of gas, penetration depth overpredicted
- Velocity of selected bubbles compared to rise velocity of single bubble [Maxworthy 1996]
Summary

• Particles for curvature estimation improve the accuracy at low resolution [arXiv:1906.00314]

• Bubbles of various scales are resolved on a uniform mesh

• Coroutines enable modularity with blockwise processing

Outlook:

• performance kernels on GPU, compute-transfer overlap

• more applications turbulent multiphase flows

• open-source release

tinyurl.com/demogrid