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LECTURE8 Numerical integration I: Rectangle,
Trapezoidal and Simpson’s Rule

We wish to evaluate a definite integral of the function f (x) in the interval x ∈ [a,b]:

I =
∫ b

a
f (x)d x (8.0.1)

Numerical integration is crucial in various situations:

• The integral cannot be solved analytically. Example: I = ∫ 1
0 sin(cos(x))dx

• Function is only known for a set of discrete points as is the case for most experimental data. One
can either find a functional form f (x) (e.g. with the methods discussed earlier in this class) and
integrate f (x) analytically or one needs to use numerical integration.

Example 8.1: Work

We are pulling a brick on a surface with a force F .

We assume that there is no friction between the brick and the surface. If F is constant and we
move the brick by a distance d , then the work we perform is equal to A = F d . However, if F is
not constant, i.e., F = F (x) than we can make an approximation and assume that F (x) = const .

over a segment ∆x (on interval [xi , xi+1]). The work we perform on this interval is ∆Ai = Fi∆xi
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and the total work is
A =

N∑
i=0
∆Ai =

N∑
i=0

F (xi )∆xi ,

where we have split the distance d into N intervals. If N →∞ and F is a continuous function we
can write the total work as A = ∫ d

0 F (x)d x. If the brick is attached to the wall with a linear spring
that has a spring constant k, we know that F = kx. Thus, the work we perform when wemove
the brick for a distance d is

A =
∫ d

0
kx d x = kd 2

2
.

Example 8.2: Moments

Consider a beam that has at left and right ends attached a mass of mass m1 and m2, respectively.
The question is how to find the position x of the support such that the beam is horizontal.

xx

d1

x=x1

d2

x=x2

m1
m2

mi

mi
(xi,yi)

If we suppose that the beam has no weight, i.e., m = 0, then the balance of moments requires
that m1(x̄ − x1) = m2(x̄ − x2) which gives x̄ = m1x1+m2x2

m1+m2
. If a beam is not massless, then we can

split the beam into small segments and the center-of-mass position of the beam is given by

x̄ =
∑N

i=0 mi xi∑N
i=0 mi

.

Equivalently, we can write for the 2D plate x̄, ȳ = (
∑N

i=0 mi (xi , yi ))/(
∑N

i=0 mi ). Suppose that the
density of the beam is not homogeneous, i.e., ρi = mi /∆xi or mi = ρi∆xi . Then we can write the
above equation as

x̄ =
∑N

i=0ρi (xi )∆xi xi∑N
i=0ρi (xi )∆xi

N→∞−−−−→
∫
ρ(x)x d x∫
ρ(x)d x

.
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8.1. Key idea 3

8.1 Key idea

In numerical integration schemes, a common approach is to split the domain [a,b] into N intervals
[xi , xi+1] of length ∆i = xi+1 −xi . Here, we exploit the property of integrals∫ b

a
f (x)d x =

∫ c

a
f (x)d x +

∫ b

c
f (x)d x, (8.1.1)

i.e., an integral can then be evaluated as a sum of integrals over subdomains. Depending on the
application, these points may be given a-priori or they are chosen for a given integration scheme. We
may thus rewrite our integral as

I =
∫ b

a
f (x)d x =

N−1∑
i=0

∫ xi+1

xi

f (x)d x (8.1.2)

In a next step we approximate f (x) within each interval with a simple function p(x) that is easily
integrable. The key idea of the numerical integration schemes is thus based on a "divide" and
"conquer" approach. Where in step 1 we do a piecewise approximation of f (x) and in step 2 we
compute many such integrals exactly.

I ≈
N−1∑
i=0

∫ xi+1

xi

pi (x)d x (8.1.3)

8.2 Numerical Quadrature

Differentnumerical integration schemesusedifferent approximations to f (x) in each interval [xi , xi+1].

Rectangle Rule: We approximate f (x) as constant using a single (left) point:

IRi = f (xi )∆i (8.2.1)

Midpoint Rule: We approximate f (x) as constant using the middle point:

IMi = f (xi+1/2)∆i = f

(
xi +xi+1

2

)
∆i (8.2.2)

Trapezoidal Rule: We approximate f (x) by a line (using 2 points):

ITi =
f (xi )+ f (xi+1)

2
∆i (8.2.3)
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Simpson’s Rule: We approximate f (x) by a parabola (using 3 points):

ISi =
f (xi )+4 f ((xi +xi+1)/2)+ f (xi+1)

6
∆i (8.2.4)

Figure 8.1 shows an example of such approximations.

x

f(x)

xi xi+1

x

f(x)

xi xi+1 x

f(x)

xi xi+1xi+1/2

rectangle	rule

trapezoidal	rule Simpson’s	rule

x

f(x)

xi xi+1xi+1/2

midpoint	rule

Figure 8.1: Example comparing the rectangle, midpoint, trapezoidal and the Simpson’s rule for
numerical integration.

Under the assumption of constant spacing ∆i ≡∆x (∀i , i = 1, . . . , N ) we can now compute the total
integral

Rectangle Rule: I ≈∆x

N−1∑
i=0

f (xi ),

Midpoint Rule: I ≈∆x

N−1∑
i=0

f

(
xi +xi+1

2

)
,

Trapezoidal Rule: I ≈ ∆x

2

(
f (x0)+2

N−1∑
i=1

f (xi )+ f (xN )

)
,

(8.2.5)

For Simpson’s approximation, we can rewrite Eq. (8.1.2) to sum over larger intervals [xi , xi+2]. In this
way, we are evaluating f (x) only at points xi . If we assume that the total number of points N +1 is
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odd we obtain:

I =
∫ b

a
f (x)d x =

N−2∑
i=0

i=even

∫ xi+2

xi

f (x)d x

∫ xi+2

xi

f (x)d x ≈ f (xi )+4 f (xi+1)+ f (xi+2)

3
∆x

Simpson’s Rule: I ≈ ∆x

3

 f (x0)+4
N−1∑
i=1

i=odd

f (xi )+2
N−2∑
i=2

i=even

f (xi )+ f (xN )

 . (8.2.6)

Example 8.3: Composite Integration

We wish to evaluate I = ∫ 1
0 5 3

p
x d x, i.e., the shaded area in Figure below.

x

f(x)

x

f(x)

x

f(x)
midpoint	rule trapezoidal	rule Simpson’s	rule

approximate	area:	3.76258	
error:	1.2584	x	10-2

approximate	area:	3.68702	
error:	6.2977	x	10-2

0.80.2 0.5 0.80.2 0.5 0.80.2 0.5
approximate	area:	3.7374	

error:	1.2603	x	10-2

To evaluate the integral we discretize the interval [0,1] using xi = 0.1 i (i = 0, . . . ,10), i.e., we have
N = 10 and ∆x = 0.1.

We thus see that all of the most fundamental methods write an integral as a weighted sum of fi :

I =
∫ b

a
f (x)d x ≈

N∑
i=0

wi f (xi ), (8.2.7)

where wi are the weights. For the trapezoidal rule for instance, we have w0 = wN =∆x /2 and wi =∆x

for i = 1, . . . , N −1.

8.2.1 Newton–Cotes formulas

A general way to derive quadrature rules is given by the Newton–Cotes formulas. To construct the
approximate function pi (x) in Eq. (8.1.2) we use M +1 equidistant points in [xi , xi+1] (xk = xi +k h,
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k = 0, . . . , M) and Lagrange interpolation. The Lagrange interpolant through the points (xk , f (xk )) is
given by

pi (x) =
M∑

k=0
f (xk )l M

k (x),

l M
k (x) = (x −x0)(x −x1) . . . (x −xk−1)(x −xk+1) . . . (x −xM )

(xk −x0)(xk −x1) . . . (xk −xk−1)(xk −xk+1) . . . (xk −xM )
.

(8.2.8)

The integral I is then approximated as

Ii =
∫ xi+1

xi

f (x)d x ≈
∫ xi+1

xi

pi (x)d x =
M∑

k=0
f (xk )

∫ xi+1

xi

l M
k (x)d x. (8.2.9)

We rewrite this as

Ii ≈∆i

M∑
k=0

C M
k f (xk ), whereC M

k = 1

∆i

∫ xi+1

xi

l M
k (x)d x (8.2.10)

Properties ofC M
k :

• Lagrange polynomials fit exactly a constant function: e.g. f (x) = 1 must be integrated exactly.
In Eq. (8.2.10), we hence want to have

Ii =
∫ xi+1

xi

1d x = (xi+1 −xi )
M∑

k=0
C M

k 1 (8.2.11)

and it follows that
M∑

k=0
C M

k = 1 (8.2.12)

• For x ∈ [xi , xi+1] we have that l M
M−k (x) = l M

k (xi +xi+1−x). To see this, inserting xM− j = xi + (M −
j )h on the right hand side (h = xi+1−xi

M and j some arbitrary number). After some algebra we
find

l M
k (xi +xi+1 −xM− j ) = ·· · = l M

k (x j ) = δ j k = l M
M−k (xM− j )

by definition of the Lagrange Polynomial. Since we did the calculation for an arbitrary j the
above equality holds. If we now use this on our definition of the coefficient C M

k and use a
substitution of variables we find that

C M
k =C M

M−k (8.2.13)

Example 8.4

Case: M=1
We choose M = 1 (i.e. 2 points x0 = xi , x1 = xi+1). The Lagrange polynomials are then given by

l 1
0 (x) = x −x1

x0 −x1
= xi+1 −x

xi+1 −xi
, l 1

1 (x) = x −x0

x1 −x0
= x −xi

xi+1 −xi
.

Models, Algorithms and Data: Introduction to computing (Spring 2019)



8.2. Numerical Quadrature 7

We integrate this and obtain:

C 1
0 = 1

∆i

∫ xi+1

xi

l 1
0 (x)d x = 1

∆2
i

∫ xi+1

xi

(xi+1 −x)d x = 1

∆2
i

(
−1

2
(xi+1 −x)2

∣∣∣∣xi+1

xi

)
= 1

2
,

C 1
1 = 1

∆i

∫ xi+1

xi

l 1
1 (x)d x = 1

∆2
i

∫ xi+1

xi

(x −xi )d x = 1

∆2
i

(
1

2
(x −xi )2

∣∣∣∣xi+1

xi

)
= 1

2
.

If we insertC 1
0 =C 1

1 = 1/2 in Eq. (8.2.10), we see that we recover the trapezoidal rule:

Ii ≈∆i

M∑
k=0

C M
k f (xk ) =∆i

f (xi )+ f (xi+1)

2
.

Case: M=2
For M = 2 (i.e. 3 points x0 = xi , x1 = (xi +xi+1)/2, x2 = xi+1), we obtain Simpson’s rule: C 2

0 = 1/6,
C 2

1 = 2/3,C 2
2 = 1/6.

8.2.2 Error analysis

Wewould like to evaluate the error that with aremaking whenwe use different numerical integrations,
that is we would like to find an upper bound or an approximation of

Erule,i = Ii − Irule,i (8.2.14)

We will do so by using Taylor expansions to evaluate the error of the numerical integration schemes.

Midpoint rule: Consider Taylor’s series around xi+1/2 = (xi +xi+1)/2:

f (x) = f (xi+1/2)+ (
x −xi+1/2

)
f ′(xi+1/2)+ 1

2

(
x −xi+1/2

)2 f ′′(xi+1/2)

+ 1

6

(
x −xi+1/2

)3 f ′′′(xi+1/2)+·· · ,
(8.2.15)

We can use this expansion to evaluate Ii :

Ii =
∫ xi+1

xi

f (x)d x

= f (xi+1/2)
∫ xi+1

xi

d x + f ′(xi+1/2)
∫ xi+1

xi

(
x −xi+1/2

)
d x

+ 1

2
f ′′(xi+1/2)

∫ xi+1

xi

(
x −xi+1/2

)2 d x + 1

6
f ′′′(xi+1/2)

∫ xi+1

xi

(
x −xi+1/2

)3 d x +·· ·

= f (xi+1/2)∆i︸ ︷︷ ︸
IMi

+0+ 1

24
f ′′(xi+1/2)∆3

i +0+O(∆5
i )︸ ︷︷ ︸

EMi

(8.2.16)

whereO(∆5
i ) includes all the higher order terms that we dropped from the Taylor series. So for
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8 Lecture 8. Numerical integration I: Rectangle, Trapezoidal and Simpson’s Rule

the midpoint rule we have that:

EMi =
1

24
f ′′(xi+1/2)∆3

i +O(∆5
i )+·· · (8.2.17)

For one interval the midpoint rule is third order accurate.

Trapezoidal rule: One can show that:

ITi =
f (xi )+ f (xi+1)

2
∆i =∆i

(
f (xi+1/2)+ 1

8
f ′′(xi+1/2)∆2

i +·· ·
)
= IMi +

1

8
f ′′(xi+1/2)∆3

i +·· ·

If we compare this with Eq. (8.2.17), we see that

ETi =− 1

12
f ′′(xi+1/2)∆3

i +O(∆5
i )+·· · (8.2.18)

Simpson’s rule: We can combine the midpoint and the trapezoidal rule. By comparing Eq. (8.2.4)
with Eq. (8.2.2) and Eq. (8.2.3), we see that:

ISi =
2

3
IMi +

1

3
ITi (8.2.19)

therefore

ESi =O(∆5
i )+·· · . (8.2.20)

We remark that the above error estimates are only valid for the local approximation. When considering
the whole domain (with a constant spacing ∆x =∆i (∀i )) the error is reduced to second order for the
midpoint and trapezoidal rule and fourth order for Simpson’s rule. For the midpoint rule for instance
we get (using Eq. (8.1.2)):

N−1∑
i=0

IMi =
N−1∑
i=0

(
Ii − 1

24
f ′′(xi+1/2)∆3

x +O(∆5
x )+·· ·

)
,∣∣∣∣∣N−1∑

i=0
IMi − I

∣∣∣∣∣< N
1

24
max

i
(| f ′′(xi+1/2)|)∆3

x +NO(∆5
x )+·· · ,

= b −a

24
max

i
(| f ′′(xi+1/2)|)∆2

x +O(∆4
x )+·· · ,

(8.2.21)

where we used that N = (b −a)/∆x .

Exam checklist

After this class, you should understand the following points regarding numerical integration:

• When to use numerical integration.

• How to do numerical integration with the rectangle, midpoint, trapezoidal and Simpson’s
rule.

Models, Algorithms and Data: Introduction to computing (Spring 2019)



8.2. Numerical Quadrature 9

• How to estimate errors of a numerical integration scheme.
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