
Learning algorithms – Back-propagation

0 Notation

The notes will use the following notation:

• i, j, k – Indices of different neurons in the network.

• n – Iteration of the training.

• dj(n) – Expected output of the j-th neuron in the output layer.

• yj(n) – Value of the j-th neuron in the output layer.

• ej(n) – Error of the value of the j-th neuron in the output layer.

• E(n) – Sum of square errors ej(n) over all neurons j in the output layer.

• η – Learning rate.

1 Back-propagation Algorithm

The error signal for output neuron j at the iteration n is defined as:

ej(n) := dj(n)− yj(n), (1)

or as the difference between the expected and the calculated value.
We define instantaneous sum of squared errors E(n) as:

E :=
1

2

∑
j∈C

e2j (n), (2)

where C is the set of all output neurons.
If N is the number of examples in the training set, the averaged square error

is obtained as:

Eav :=
1

N

N∑
n=1

E(N) (3)

Our objective is to minimize Eav by adjusting the network parame-
ters. How do we do it?

The basic principle is as follows. In the n-th training step, we choose a train-
ing sample randomly from our training data-set and evaluate the full network.
The network will give some values yj(n) as output, which might be close or far
from the expected values dj(n). To improve the accuracy of the network (de-
crease the errors ej(n) or the total error E(n)), we calculate for each parameter
how much it affects the final result and thereby the total error. Namely, we

calculate ∂E(n)
∂w for all weights w in all layers of the network. After that, the

weights are changed in the favorable direction and magnitude, which is what

the gradient ∂E(n)
∂w tells us.

The reason the full training data-set is not used in each training step is that
it could be too large to handle (e.g. couldn’t fit into memory) and because the
minimization might be too slow, as each time step we would need to evaluate

1



Figure 1: Signal-flow graph highlighting the details of the neuron j.

the network for each sample from the data-set. Therefore, the weight gradi-
ents described above (and therefore the final weights themselves) serve only as
estimates of the correct gradients and weights that would be retrieved if the
full data-set was used. In practice, the data-set is split into small batches, an
estimate of the gradient is computed from each of the samples in a batch and
the weights are updated according to the average gradient of the batch.

The beauty of this approach is that calculation of all derivatives ∂E(n)
∂w can

be done in the same complexity as the evaluation of the network itself, i.e. cal-

culating yj(n) and ∂E(n)
∂w is only twice as slow as calculating only yj(n). The

process of calculating these derivatives is called back-propagation. The name
comes from the inverse direction of the data flow. Namely, in the evaluation
of the network, the ”information” flows from the input side towards the out-
put, while in the back-propagation step the information flows from the output
towards the input. This is a simple consequence of the chain rule for the deriva-
tives of the composition of functions. We will derive the procedure in details
mathematically.

Consider the output neuron j, as shown in the Figure 1. The results yi(n) of
the previous layer are passed to the neuron j, summed using the matrix wji(n)
to form the results vj(n). These are passed through the non-linear function ϕ
to get the final output value yj(n) of the neuron j. Please note that in this
notation, j and i refer to different layers. The value yj(n) is then subtracted
from the expected value dj(n) to calculate the error ej(n). We are interested in

the gradients ∂E(n)
∂wji(n)

. We use the chain rule to do the calculation. The iteration

2



(n) is omitted for brevity:

∂E
∂wji

=
∂E
∂ej

∂ej
∂wji

=
∂E
∂ej

∂ej
∂yj

∂yj
∂wji

=
∂E
∂ej

∂ej
∂yj

∂yj
∂vj

∂vj
∂wji

=

[
∂

∂ej

1

2
e2j

][
∂

∂yj
(dj − yj)

][
ϕ′(vj)

][
∂

∂wji

p∑
i=0

wjiyi

]
= −ejϕ′(vj)yi
= −ej(n)ϕ′(vj(n))yi(n)

(4)

If updating the weights from single gradient estimates, the correction ∆wji(n)
is calculated by:

∆wji(n) = −η ∂E(n)

∂wji(n)
, (5)

where η is a constant that determines the rate of learning, called learning rate.
If the learning rate is too small, the convergence will be too slow, if it’s too high,
the weights will not converge.

Correction ∆wji(n) can be written as:

∆wji(n) = ηδj(n)yi(n), (6)

where δj(n) is the local gradient defined as:

δj(n) :=
∂E(n)

∂vj(n)

= ej(n)ϕ′j(vj(n)).

(7)

The previous derivation of weight corrections is done assuming j is an output
neuron so that the error signal is directly computed from Eq. (1) as the desired
output dj is given.

Same derivation for a network with hidden layers requires knowledge of how
to penalize hidden neurons for their share of responsibility in determining the
output. This problem is referred to as the credit-assignment problem which is
decomposed into two subproblems

1. Temporal credit assignment: involves instants of time when the actions
that deserve credit were actually taken;

2. Structural credit assignment: involves assigning credit to the internal
structures of actions generated by the system.

For a hidden neuron j, the weight corrections need to be determined recur-
sively in terms of the error signals from output neurons as illustrated in Fig. 2
where the hidden neuron j is connected to output neurons k. The local gradient
is redefined as

δj(n) = − ∂E(n)

∂yj(n)

∂yj(n)

∂vj(n)

= − ∂E(n)

∂yj(n)
ϕ′j(vj(n))

(8)

3



Figure 2: Connections between hidden j and output neurons k.

and the error is computed from output neurons

E(n) =
1

2

∑
k∈C

e2k(n). (9)

Differentiating E(n) with respect to yj(n), we get

∂E
∂yj

=
∑
k

ek
∂ek
∂yj

=
∑
k

ek
∂ek
∂vk

∂vk
∂yj

(10)

where the error signal for output neurons is known directly from the desired
output dk(n)

ek(n) = dk(n)− yk(n) = dk(n)− ϕk(vk(n)) (11)

∂ek
∂vk

= −ϕ′k(vk(n)) (12)

with

vk(n) =

q∑
j=0

wkj(n)yj(n), (13)

where q is the total number of inputs applied to neuron k. Differentiating
Eq. (13) with respect to yj(n) yields

∂vk(n)

∂yj(n)
= wkj(n). (14)

Substitution of Eq. (12) and Eq. (14) in Eq. (10) yields the desired partial
derivative of the instantaneous sum of squared errors

∂E(n)

∂yj(n)
= −

∑
k

ek(n)ϕ′k(vk(n))wkj(n)

= −
∑
k

δk(n)wkj(n),
(15)

4



where the definition of the local gradient δk(n) from Eq. (7) has been used in
the second line with index k substituted for j (neuron k is an output node). By
substituting Eq. (15) into Eq. (8) we get the local gradient for hidden neuron j
as follows

δj(n) = ϕ′j(vj(n))
∑
k

δk(n)︸ ︷︷ ︸
I

wkj(n).︸ ︷︷ ︸
II

(16)

The factor ϕ′j(vj(n)) involved in the computation of the local gradient depends
solely on the activation function associated with hidden neuron j. The factor
given by the summation depends on two terms:

I: This term requires knowledge of the error signals ek(n) for all neurons
that are in the layer to the immediate right of hidden neuron j and are
directly connected to neuron j as shown in Fig. 2;

II: This term consists of the synaptic weights that are associated with these
direct connections.

In summary, the relations derived for the back-propagation algorithm are as
follows:

1. The correction ∆wji(n) applied to the synaptic weight connecting neuron
i to neuron j is defined by the delta-rule

∆wji(n)︸ ︷︷ ︸
Weight

correction

= η︸︷︷︸
Learning-rate

parameter

δj(n)︸ ︷︷ ︸
Local

gradient

yi(n)︸ ︷︷ ︸
Input signal

of neuron j

2. The local gradient δj(n) depends on whether neuron j is an output node
or a hidden node:

i If neuron j is an output node, δj(n) is computed by the product of
the derivative ϕ′j(vj(n)) and the error signal ej(n), both terms are
associated with neuron j.

ii If neuron j is a hidden node, δj(n) is determined by the derivative
ϕ′j(vj(n)) and the weighted sum of the local gradients computed for
the neurons in the next hidden layer (to the right) or output layer that
are connected to neuron j.

1.1 Application of the back-propagation algorithm

Two distinct passes may be considered for the application of the back-propagation
algorithm

1. Forward pass to output

2. Backward pass to input

5



Forward pass

The synaptic weights of the network remain unchanged during the forward pass.
Only function signals are computed on a neuron-by-neuron basis. The function
signal at the output of neuron j is given by

yj(n) = ϕ(vj(n)), (17)

where vj(n) is the net internal activity level of neuron j, given by

vj(n) =

p∑
i=0

wji(n)yi(n) (18)

with p the total number of inputs applied to neuron j, wji(n) the synaptic weight
connecting neuron i to neuron j and yi(n) is the input of neuron j or output
of neuron i, respectively. For the first hidden layer, the input is determined by
the terminal network input, whereas the output of neuron j in the output layer
corresponds to the j-th terminal output of the network. The error signal ej(n)
is then obtained with Eq. (1), where yj(n) corresponds to the network output
of neuron j. Therefore, the forward phase propagates from the network input
to the network output (left to right in Fig. 2).

Backward pass

The second phase propagates in the opposite direction. The error signals ej(n)
are passed as inputs to the output layer. The local gradients δ are then computed
for each neuron recursively layer by layer. The recursive computation allows the
synaptic weights to change, where the correction is given by the delta rule. The
local gradient for a neuron j in the output layer is given by the product of
the error signal ej(n) and the derivative of its nonlinearity ϕ′j(vj(n)). We then
continue by using the delta rule to find a correction for the synaptic weights
and apply Eq. (16) to compute the local gradient for the next hidden layer.

1.2 Activation function

The computation of the local gradients for neuron j requires the derivative ϕ′j(·)
of the activation function ϕj . An activation function that is commonly used in
multilayer perceptrons is the sigmoidal nonlinearity given by

yj(n) = ϕj(vj(n))

=
1

1 + e−vj(n)
−∞ < vj(n) <∞,

(19)

where vj(n) is the net internal activity level of neuron j. With this choice, the
output lies within 0 ≤ yj ≤ 1. The derivative ϕ′j(vj(n)) is found by

yj(n)

vj(n)
= ϕ′j(vj(n))

=
e−vj(n)

[1 + e−vj(n)]2

=
e−vj(n)

1 + e−vj(n)
1

1 + e−vj(n)
= [1− yj(n)]yj(n).

(20)

6



Note that the derivative ϕ′j(vj(n)) obeys its maximum for yj(n) = 0.5 and
its minimum value zero for yj(n) = 0 or yj(n) = 1. Thus, for the sigmoidal
activation function, the synaptic weights are changed the most for neurons with
values yj(n) close to 0.5.

1.3 Training modes

The learning in the back-propagation algorithm is achieved by presenting a set
of prescribed training examples to the neural network. One complete presenta-
tion of a training set with N patterns is called an epoch. The learning process
is maintained epoch-by-epoch until the synaptic weights stabilize and the av-
erage squared error Eav converges to a minimum value. It is good practice to
randomize the order of the training samples presented to the network from one
epoch to the next. There are two basic ways to perform the weight updates in
back-propagation learning:

Pattern mode: In this mode, the weight update is performed after the pre-
sentation of a training sample. For each training set, the forward and
backward passes are performed as described above. Let ∆wji(n) denote
the correction to the synaptic weight wji after the presentation of training
pattern n. The net weight change averaged over all patterns is given by

∆ŵji =
1

N

N∑
n=1

∆wji(n)

= − η

N

N∑
n=1

∂E(n)

∂wji(n)

= − η

N

N∑
n=1

ej(n)
∂ej(n)

∂wji(n)
,

(21)

where Eq. (2) and (5) have been used.

Mini-batch mode: In mini-batch mode, the weights are updated after the
presentation of a subset (batch) of B training samples. The limiting case
of the mini-batch mode is batch learning, where each weight update is
performed according to the average gradient of the entire dataset (i.e.
B = N the batch has the same size as the data set).

For this mode the cost function is defined by the average squared error:

Eav =
1

2B

B∑
n=1

∑
j∈C

e2j (n). (22)

The correction for the synaptic weight ∆wji is again defined by the delta
rule

∆wji = −η ∂Eav
∂wji

= − η
B

B∑
n=1

ej(n)
∂ej(n)

∂wji
.

(23)

7



The weight adjustment is then applied only after the entire mini-batch
has been presented to the network.

The batch mode provides a more accurate estimate of the gradient vector, es-
pecially when we expect the training samples to be noisy, but it requires more
computation per each weight update. The correction ∆ŵji for the pattern mode
is an estimation to ∆wji of the batch mode.

Batch learning (estimating gradients from the whole dataset), is generally
avoided as it tends to converge and be stuck (in weight space) in local minima.
Provided that the order of the training patterns are randomized per epoch, pat-
tern mode learning is the least likely to be stuck in a local minimum. However,
the update might never converge to a fixed point unless the learning rate is ex-
tremely small. The mini-batch mode can be considered a compromise between
these two modes as it provides accurate gradients from noisy data sets and can
escape local minima.

Mini-batch mode is currently the standard way to train neural networks.
In addition to the stated benefits, this mode has the computational benefit of
being efficiently parallelizable, allowing faster training of large network models.

8


