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Abstract

This paper presents a computationally efficient, two-dimensional, feature point tracking algorithm for the automated detection
and quantitative analysis of particle trajectories as recorded by video imaging in cell biology. The tracking process requires no a
priori mathematical modeling of the motion, it is self-initializing, it discriminates spurious detections, and it can handle temporary
occlusion as well as particle appearance and disappearance from the image region. The efficiency of the algorithm is validated on
synthetic video data where it is compared to existing methods and its accuracy and precision are assessed for a wide range of signal-
to-noise ratios. The algorithm is well suited for video imaging in cell biology relying on low-intensity fluorescence microscopy. Its
applicability is demonstrated in three case studies involving transport of low-density lipoproteins in endosomes, motion of fluores-
cently labeled Adenovirus-2 particles along microtubules, and tracking of quantum dots on the plasma membrane of live cells. The
present automated tracking process enables the quantification of dispersive processes in cell biology using techniques such as

moment scaling spectra.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Techniques such as multi-color video microscopy and
Single Particle Tracking (SPT) are becoming indispens-
able in cell biology. The quantitative analysis of the
resulting trajectories provides important information
about working mechanisms and structures in living cells.
SPT (DeBrabander et al., 1985) has been used first for
descriptive studies of plasma membrane protein and lip-
id diffusion (Anderson et al., 1992; Ghosh and Webb,
1994; Hicks and Angelides, 1995; Zhang et al., 1991).
With the development and availability of new microsco-
py techniques such as confocal microscopy and Total
Internal Reflection Microscopy (TIRFM) (Toomre
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and Manstein, 2001), it has become possible to classify
modes of motion in live cells, determine diffusion coeffi-
cients of single molecules (Goulian and Simon, 2000), or
measure the step displacements of molecular motors
such as kinesin (Gelles et al., 1998). Descriptions and
overviews of the employed analysis methods are avail-
able in the review by Saxton and Jacobson (1997).

Video microscopy of fluorescently labeled virus par-
ticles transported on cell surfaces and into internal
organelles led to the pioneering study of Pelkmans
et al. (2001, 2002). Using frames from videos, they
visualized and analyzed many of the key steps in the
early pathway of the caveolar entry of SV40 into live
cells (Pelkmans et al., 2001). This analysis was per-
formed tracking by hand the individual particles, a
procedure that becomes impossible when one needs
to analyze the multitude of trajectories available by to-
day’s video techniques.
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The feature point tracking problem consists of detect-
ing images of particles in a digital video sequence and
linking these detections over time to follow the traces
of individual particles. Applications of feature point
tracking are numerous in several fields of science and
technology such as fluid mechanics (e.g., particle imag-
ing velocimetry, particle tracking velocimetry Wereley
et al., 2002), computer vision (e.g., road following Mor-
gan et al., 1990, human limb tracking Lerasle et al.,
1999), navigation (e.g., vehicle navigation Sanchiz and
Pla, 1999), material science (e.g., colloids Crocker and
Grier, 1996), and biology (e.g., membrane protein and
lipid diffusion Anderson et al., 1992; Fujiwara et al.,
2002; Ghosh and Webb, 1994; Hicks and Angelides,
1995; Zhang et al., 1991). A number of specialized, often
application-specific, algorithms, and computer pro-
grams is available (Chetverikov and Verestdy, 1999;
Cheezum et al., 2001; Vallotton et al., 2003). Most of
them make use of a priori knowledge about the physics
of the problem to construct effective and robust feature
point tracking procedures. Some of them are very accu-
rate, but computationally intense, which prohibits track-
ing of long video sequences.

Biological applications, as those mentioned above,
often involve the tracking of objects whose type of mo-
tion may not be known explicitly in advance. In these
cases, the tracking task is hindered by the absence of a
suitable mathematical model, by the possible stochastic
character of the motion, or by trajectories entailing sev-
eral modes of motion (e.g., smooth and non-smooth
parts). Most biological applications only require the
two-dimensional case since the motion either is two-di-
mensional (e.g., on the plasma membrane) or is ob-
served using “two-dimensional’” microscopy techniques
such as TIRFM (Toomre and Manstein, 2001) or confo-
cal microscopy.

In this article, the automated computation of trajec-
tories is developed under the basic assumptions of small
feature points (compared to the length scale of back-
ground variations), limited speed, and short occlusions.
The present algorithm is self-initializing and capable of
handling occlusion, exit, and entry. It is in the same
functional class as the IPAN tracker introduced by
Chetverikov and Verestdy (1999), except that the pres-
ent work makes no assumptions about the smoothness
of the trajectories. The present algorithm is fast and effi-
cient, while at the same time having accuracy and preci-
sion that are comparable to far more computationally
intensive algorithms. The algorithm relies on a mini-
mum set of assumptions, reduced prior knowledge of
the physical process, and a small set of user-defined
parameters. It is suitable for tracking of long videos of
mobile objects such as viruses on the plasma membrane,
fast-directed motion such as trafficking along microtu-
bules, and particles with strong intensity fluctuations
such as quantum dots (Qdots).

The automated detection of trajectories from video
sequences provides us with a wealth of information that
can be exploited to quantify further the particle mo-
tions. The analysis of two-dimensional trajectories is a
well established technique to determine diffusion coeffi-
cients or transport velocities (Qian et al., 1991). In the
present work, we employ Moment Scaling Spectra
(MSS) (Ferrari et al., 2001), first introduced in fluid
mechanics to quantify dispersion processes. This tech-
nique is shown to provide a systematic characterization
of particle trajectories, enabling a rigorous quantifica-
tion of biological dispersion processes.

2. Feature point tracking algorithm
2.1. Definitions

The following problem definition and terminology
will be used throughout this article: we consider physical
particles that are mobile in a two-dimensional plane.
Their motion is observed using imaging equipment and
a digital (CCD) camera which generates a sequence of
digital images at discrete time points. We call this se-
quence a movie and an individual image from it a frame.
In each frame, the images of the particles are visible as
feature points (or points). The goal is to approximately
reconstruct the motion of the observed particles. Such
a reconstruction consists of an ordered series of point
locations over the recording time points of the individu-
al frames and is called a (discrete) trajectory. To gener-
ate the trajectories, the feature point tracking algorithm
has to perform two distinct steps: first it has to detect
the feature points in every frame and then it has to /ink
these point detections into trajectories. If a point is
detected where there is none, we call it a false detection.
The term “‘spurious detection” on the other hand refers
to a correctly detected point where there was no particle
of the desired kind in the real scene. Finally, linking two
points that are not images of the same physical particle
is called a false link. If a trajectory does not extend
through the whole image sequence it is called incomplete.
This manuscript describes and tests an algorithm for
feature point tracking, which is a sub-problem of particle
tracking and does not include treatment and analysis of
the physical system under observation and the used
imaging equipment.

2.2. Feature point detection

The algorithm is initialized by determining the glob-
al' minimum I,;, and maximum I, of all intensity

! That is, across all the frames of the movie rather than within each
frame individually.
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values occurring in the movie. All pixel intensity values 7
are then normalized as (/—Ipin)/(ZImax—Imin)- The use of
global extrema preserves intensity variations across
frames, serving as an important source of information
in the linking step. The feature point detection consists
of four steps:

(1) image restoration;

(2) estimation of the point locations;
(3) refinement of the point locations;
(4) non-particle discrimination.

The implemented algorithm has as a starting point the
work by Crocker and Grier (1996) for the detection of
gold colloids in micrographs. In the following, the nor-
malized frame image at observation time ¢ is represented
as a matrix A'(x,y) of floating point intensity values
between 0 and 1. The integer coordinate x =1, ..., N,
is the pixel row index and y = 1,..., N, is the pixel col-
umn index.

The image restoration corrects for imperfections in
the frame images. There are two different effects
accounted for: (1) long-wavelength modulations of
the background intensity due to non-uniform sensitiv-
ity among the camera pixels or uneven illumination,
and (2) discretization noise from the digital camera.
The former is straightforward to correct for since we
assume the feature points to be small compared to
background variations and thus well separated in spa-
tial frequency. The background is removed by a box-
car average over a square region with extent of 2w + 1
pixel:

Ao = ; ,;VA (x+i,y+), (1)
where the user-defined parameter w is an integer larger
than a single point’s apparent radius but smaller than
the smallest inter-point separation. The camera discreti-
zation noise is modeled as uniformly Gaussian with a
correlation length of /7, =1 pixel. The de-noising filter
thus consists of a convolution of the image A4’ with a
Gaussian surface of revolution of half width 4, (Crocker
and Grier, 1996):

A (x )—li i:Af( +i ' _EAT
) =3 X +1i,y+j)exp e

i=—w j=—w
2)
with normalization
N 2
B = Z exp(—(i*/(447))) 3)

Both Egs. (1) and (2) amount to convolving the image
with kernels of support 2w + 1. The steps are thus com-

bined and the final image restoration consists of a con-
volution of the original frame image with the kernel
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allows comparison among images filtered with different
values of w. The filtered image after restoration is given
by:

Ao =3 S A — iy — KRG, ). (6)

i=—w j=—w

To perform the convolution, the image is temporarily
padded to size (N, + 2w) x (N, + 2w) by repeating the
first and last row and column each w-fold outwards.
Negative pixel values generated by the convolution are
reset to 0. They are an artifact of the approximation
of the camera noise by a Gaussian distribution, which
breaks down at small intensity levels.

Estimating the feature point locations is done by find-
ing local intensity maxima in the filtered image A’f. A
pixel is taken as the approximate location of a point
if no other pixel within a distance of w is brighter
and if its intensity is in the upper rth percentile of
intensity values of the current frame image. The inten-
sity percentiles are determined on a per frame basis to
be robust against possible global drift in image intensi-
ty over time, e.g., due to unspecific bleaching of the ob-
served particles. The local maximum selection is
implemented as a grayscale dilation (Jain, 1986) fol-
lowed by the selection of all pixels that have the same
value before and after the dilation. If such a pixel is in
the upper rth percentile of intensity values, it is taken
as the candidate location of a point. The local maxi-
mum selection of point centers suffers from two defi-
ciencies: (1) it is unable to reject noise, which leads
to errors in the location estimate, and (2) it will include
spurious detections such as random bright points in the
background of the image or images of particle aggre-
gates. This makes both a refinement of the detected
locations and a subsequent non-particle discrimination
necessary.

Refining the point locations will reduce the standard
deviation of the position measurement. Other informa-
tion gathered in the process can furthermore be reused
later to reject spurious detections. The assumption is
that the found local maximum of a point p at (%,,7,)
is near the true geometric center (x,,y,) of the particle.
An approximation of the offset is given by the distance
to the brightness-weighted centroid in the filtered (to
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reduce noise-induced positioning errors) image A}-
(Crocker and Grier, 1996):

[sx(P)] 1

i
RS o A7 G 41,3, +J)- 7
a(p) ]~ o) i, @
The normalization factor m(p) is the sum of all pixel
values over a feature point p, i.e., its intensity moment

of order 0:

mo(p) =Y Ay, + i3, +))- (8)

i2+j2§w2

242 <w?

The location estimate is refined as: (X,,7,) =
(X, + &:(p), 3, + &,(p)). If either [e(p)| or [e,(p)| is larger
than 0.5 pixel, the candidate location (%,,,) is accord-
ingly moved by one pixel and the refinement re-
calculated.

The non-particle discrimination should reject spurious
detections such as non-specific signals, dust, or particle
aggregates. The implemented classification algorithm
after Crocker and Grier (1996) is based on the intensity
moments of orders 0 and 2. The 0ti order moment of
each point p has already been calculated in the previous
step. The second-order intensity moment is computed
as:

1

mp) = s S AP LT, ) ()

The underlying assumption is that the majority of the
detected observations correspond to correct particles
such that they form a dense cluster in the (mg,m,)-plane.
Larger and dimmer or brighter structures such as aggre-
gates or accumulations will have different intensity

momenta and fall outside of the main cluster. They
are identified by having each point p “carry” a 2D
Gaussian

1
P ) = S,
(mo —mo(p))* _ (ms —my(p))*
P T 209 a 20,
(10)

with standard deviations ¢y and a,, and N, the total
number of detected points in the current frame. The
contributions of all other points ¢ # p are summed for
each point p at its location, giving a score

S, = 3P, (molp),ma(p)). (1)

q#P

Every point detection having a score S, above a certain
user-provided threshold 7 is considered as an observa-
tion of a “true” particle, all others are discarded.
Notice that the standard deviations ¢y and ¢, define
the length scale of the clustering and can be chosen such
as to normalize the cluster widths. Let 7., be the max-
imum intensity in the movie; I,,x = 1 if the images are
normalized as described earlier. We then have the
bounds 0 < mgy < Ipaxmw®  and 0 < miy < Lpyaxow™/2,
which can be used to estimate values for g and a,. In
our experience, a value of about 0.17,,.,7w> seems to
be a good choice. Fig. 1 illustrates the non-particle dis-
crimination clustering applied to a confocal image of
fluorescently labeled Polyoma virus particles on a
PTK2 cell. The image shows a confocal slice through
the cell and thus contains observations of virus particles

Fig. 1. Left panel: example of the non-particle discrimination clustering in the (n1,m,)-plane. Each symbol represents one detected feature point. The
clustering with o9 = 0, = 0.1, and T = 2.0 (images normalized to I,,,x = 1) classifies the points marked by a plus symbol as “true” particles. Points
outside the cluster are marked by circles and are classified as spurious detections. Right panel: confocal image of fluorescently labeled Polyoma virus
particles on a PTK2 cell (image intensities are inverted for printing purposes). The confocal slice contains both extracellular and intracellular regions.
Already internalized virus particles are packed together in endocytic organelles that appear as larger fluorescent structures and are to be excluded
from the trajectory linking. The result of the clustering shown in the left panel is illustrated with plus symbols marking “true” particles. Inset shows

enlargement as indicated.
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both on the plasma membrane and in the interior of the
cell. The clustering is used to discard virus particles
packed together in endocytic organelles, allowing analy-
sis of individual free particles.

2.3. Trajectory linking

The feature point detection algorithm is applied to
each frame image A’ and yields a set of T (total number
of frames in the movie) matrices C' € R"** with rows
%, jzp}g;l, where N, is the total number of points detect-
ed in frame .

The linking algorithm identifies points correspond-
ing to the same physical particle in subsequent frames
and links the positions {C'}", into trajectories. This
involves finding a set of associations between the point
location matrices {C'}/_, such that a cost functional is
minimized. The present implementation is based on a
particle matching algorithm (Dalziel, 1992, 1993a,b)
using a graph theory technique (Hichcock, 1941) to
determine optimal associations between two sets. This
algorithm is extended so that each linking step may
consider several frames to account for particle
occlusion.

Let 2 represent the set of points p,, where i =1,...,
N;, in frame ¢ and R a user-defined integer parameter
specifying how many future frames are to be considered.
For all sets 2,, r=1,..., R, of points ¢;, where j=1,.. .,
N,,, in frame ¢ + r an association matrix G is defined:

1 if p; in frame ¢ and g; in
frame ¢ + r are produced by
the same physical particle,

0 otherwise.

Gi(i,j) =& =

(12)

We assume that there is always exactly one physical par-
ticle producing a single point detection. Note that this is
a limiting assumption since particles could in principle
coalesce or come so close that they are indistinguishable
by the used imaging equipment, giving raise to one sin-
gle point observation.

To allow the number of points to vary between
frames, i.e., N;# N,y,, every association matrix is aug-
mented with both a row go; and a column g,y for dummy
particles at times ¢t and ¢+ r, respectively. Linking a
point to the dummy means that the corresponding par-
ticle disappeared from the observed part of the scene be-
tween frames ¢ and ¢ + r, and linking the dummy to a
point means that the corresponding particle newly ap-
peared. This leads to the following topology constraint
on the matrices G.:

Every row i > 0 of G/ and every column j > 0 of G
must contain exactly one entry of value 1, all others
are 0. Row 0 and column 0 are allowed to contain more
than one entry of value 1.

To find an optimal set of links g;;, we need to define
the cost functional to be minimized. To be able to use
the efficient solution algorithm based on the transporta-
tion problem (Dalziel, 1993b; Hichcock, 1941), this
functional needs to be linear in the association variables
g and may thus be written as the linear combination

Ni Nigr

Q= Z Z b8 (13)

i=0 j=0

where ¢;; represents the cost of associating point p; in
frame ¢ with point ¢; in frame ¢+ r. The definition of
¢ typically includes the point positions, characteristics,
or (if available) temporal and spatial knowledge about
the physics of the process. For the above functional to
be linear, ¢ itself must not depend on the association
variables g;;. In our case, we use the quadratic distance
between p;, i> 0, and g;, j > 0, as well as the quadratic
differences in the intensity moments of order 0 and 2,
thus:

by = (% — scq,-)2 + 0, — j/q,)2 + (mo(p;) — mO(q.i))2
+ (ma(p) = ms(q,)) (14)

for i,j > 0. The cost of linking a point to one of the dum-
my particles i=0 or j=0 is set equal to: ¢g; = (rL)?,
j>0,and ¢, = (rL)z, i > 0. This effectively places a limit
to the allowed cost for point associations since no asso-
ciation of cost larger than (rL)? will occur between reg-
ular points because the dummy association would be
more favorable. The parameter L is specified by the user
and represents the maximum distance a point is allowed
to travel between two subsequent frames when its inten-
sity moments remain constant. To speed up the linking
process, all costs {¢;:¢d; > (rL)*} are set to oo and the
corresponding g; will never be considered in the
following.

2.3.1. Initialization

The linking process starts by creating an arbitrary set
of associations g; that satisfies the topology constraint.
Any valid association matrix G. is acceptable since the
linear nature of ¢ ensures that the minimum of the
objective function is unique (Dalziel, 1993b). Learned
choice of the initial associations can significantly reduce
the number of iterations needed in the subsequent opti-
mization process. The initial set of links is thus deter-
mined as follows: For each pair of frames (¢,r),
r=1,..., R, the association matrix G/ is initialized by
assigning each point in frame ¢ its nearest neighbor,
using ¢ as the distance measure, in frame ¢+ r that is
not already assigned to some other point. This means
that for every given i =1, j = J is chosen such that ¢;;
is the minimum of all ¢ for which no other g;; is al-
ready set to 1. This g;; is then set to 1. If no such min-
imum is found, the point is linked to the dummy, i.e., g
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is set to 1. After having done this for all the points p;,
every J for which no g;; is set is determined and the cor-
responding gy, is set to 1. This initialization generates a
matrix G. that fulfills the topology constraint. For low
point densities, this initial solution is already very close
to optimal since only few conflicts occur (i.e., the associ-
ation that would have had the lowest cost was already
blocked by another one). To cope with regions of high
point density, the association matrix is iteratively
optimized.

2.3.2. Optimization

For each iteration, we scan through all g;;, including
the dummy particles, that are equal to 0 and have finite
associated cost ¢;. For these we determine the reduced
cost of introducing that association into the matrix.
The reduced cost is calculated from the elementary costs
¢ for i,j>0 by considering a zero association gy,
I,J>0. Let g7z = 1 and ggy =1, since every row and col-
umn must contain a 1 according to the topology con-
straint. Now if g;; was to be set to 1, then g;; and gxs
must turn 0, otherwise points p; and ¢; would be in
two places at once. Further, as point detections i = K
and j= L must be related to some physical particle, it
is necessary to set gx; = 1. The reduced cost of setting
g1, 1LJ >0, to 1 thus is:

2 = ¢1J — ¢y — ¢KJ + bgs,

If the reduced cost z;; is negative, introducing the asso-
ciation g;; into the solution is favorable, i.e., will de-
crease the cost functional @. In the case of a newly
appearing particle, i.e., the association under consider-
ation is at go; for some J > 0, only the 1 in the same col-
umn at ggy;, K> 0, is turned into a 0 and the dummy
entry ggo is set to 1. The reduced cost for an appearing
particle thus is:

207 = Qoy — iy + Pros
For a disappearing particle we similarly have:
zi0 = ¢ — P + Povs I,L>0,K =0, (17)

setting gz, >0, to 1, turning g;z, L >0, from 1 to 0,
and setting the dummy g,; to 1 as well. The special case
I=J=01is set to zoo = 0. After calculating the reduced
costs V{(i,j): g5 = On¢; < 0o}, the g;; which corresponds
to the most negative reduced cost z;; = min; jz;; is set to
1, the corresponding g;; (if I#0) and gx; (if J#0) to 0
and gg; to 1. All the reduced costs are then re-calculated
and the iteration is repeated until z; > 0 V(i,j), which
means that the optimal set of associations, with cutoff
L, between frames ¢ and ¢ + r has been found.

After doing so for allr =1, ..., R and a fixed specific
t, all points in C’ that have been linked to the dummy
particle in C"*! are closely analyzed to re-connect broken
trajectories caused, e.g., by particle occlusion, a sensitive
non-particle discrimination, or a particle being close to

1,J > 0. (15)

J.K>0,L=0. (16)

the intensity percentile threshold. For each such point
p; in frame ¢, all association matrices G, r=2,..., R
are scanned for valid associations to non-dummy points.
If there are such associations, the one that has the small-
est reduced cost is accepted and the corresponding point
detections are linked.

Repeating the whole procedure for every frame ¢
leads to an optimal (in the sense of the chosen cost func-
tional @) linking of the detected point locations into tra-
jectories over time. The computational cost of this
linking algorithm formally scales as O(R(N* — N)) and
the algorithm needs (/(RN*) memory. Associations be-
tween well separated particles are however initially
marked by an infinite cost and are never considered dur-
ing optimization. This greatly improves the computa-
tional efficiency. The number of possible associations
with finite cost values ¢;; is greater than or equal to
max(N,N.,), but much lower than (N +1)(N,, + 1),
depending on the actual distribution of particles. In
practice, the computational time for this algorithm
increases only slightly more rapidly than ¢(RN) and R
is usually small (1, 2, or 3). In fact, the trajectory linking
takes less time than the feature point detection in most
practical applications. A typical optimization of the
association matrix G| needs in the order of 10 iterations
until the optimum set of links is found.

2.4. Computer implementation

The algorithm is implemented in ANSI C using a cli-
ent-server model. The communication between the serv-
er and the clients is controlled by a simple packet-based
protocol, which is directly built upon TCP/IP. This
makes it possible to access the server from any remote
computer that provides access to the network.

The server application essentially consists of two
parts: communication and point tracking. The point
tracking part provides an Application Programming
Interface (API) that is used by the communication part.
This API implements the algorithm described so far plus
a set of functions for setting the tracking parameters,
submitting a list of images, and retrieving the results.
The communication part connects the tracker API with
multiple, potentially concurrent clients. This is realized
by multi-threading under the Windows operating system
and multi-processing under Linux.

The client application provides an implementation of
the communication protocol and a user interface. It sets
the user-defined parameters of the tracking server, reads
and submits an image sequence either as a series of
TIFF images or directly from an MPEG-1 movie file,
and receives the resulting trajectories from the server.
Both a text-mode and a graphical client are available.
The former is provided for efficient batch operation,
e.g., use from scripts or other programs, the latter pro-
vides ease of use and assisted parameter choices, and
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directly allows to inspect the final result of a tracking job
and analyze the trajectories with regard to their motion
properties, diffusion constants (Qian et al., 1991), or
MSS (Ferrari et al.,, 2001). The graphical client can
directly export processed data and diagram plots. Both
clients have been tested on Mac OS X, Windows, and
Linux operating systems.

3. Benchmarks

The quality of the feature point detection is evaluated
using synthetic frame sequences of moving point blobs.
This method of evaluation is preferred over the common
experimental practice of tracking a stationary/fixed par-
ticle and use the variance of the detected point positions
as a measure of tracking quality. The true accuracy of
the algorithm is given by its bias (Cheezum et al.,
2001), which cannot be estimated unless the precise
and correct relative position of the particle with respect
to the elements of the imaging system is known. The
only way to achieve such conditions is by using numer-
ical simulations.

A good tracking algorithm has to meet two indepen-
dent measures of quality: it should minimize determi-
nate errors resulting from inaccuracies inherent to the
algorithm and it should minimize indeterminate errors
from measurement fluctuations and imaging noise.
While determinate errors will systematically bias the po-
sition detections toward incorrect values, indeterminate
errors fluctuate randomly. Following the terminology of
Cheezum et al. (2001), we will refer to the measure of
determinate errors as accuracy and to the one of indeter-
minate errors as precision.

Both accuracy and precision are estimated for a mov-
ing point source at different signal-to-noise ratios (SNR)
and pixel displacements per frame (Ax). Synthetic frames
are created using particles moving on a horizontal
straight line at constant speed Ax pixel/frame, cf. Fig. 3.
Observation is simulated by centering a 2D Gaussian blob

(x =) + (v = yp)2>

(18)

Intensity [a.u.]

10

5 x [pixel]

y [pixel] 00
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of standard deviation ¢ = 1 pixel (Thompson et al., 2002)
at the current particle location (x,,y,) and sampling
its value at the center of all pixels, x ==1/2, 43/2,
+5/2,..., y ==+1/2, £3/2, £5/2,.... Gaussian blobs are
used as an approximation to (1) the sinusoidal intensity
distribution of radially emitting spherical beads and (2)
the square Bessel point spread function of a sub-resolu-
tion particle imaged using a microscope. To model differ-
ent SNR, a background (black) level of » = 10 is added
to all pixels and the peak intensity v of the blobs is varied
by setting I, = v—>b before adding the blobs to the imag-
es. For the noise model, we assume that the images are
acquired using a digital CCD camera. Such cameras pro-
duce Poisson-distributed pixel noise due to the discrete
photoelectron counting (Ryan et al., 1990). Pixel noise
is thus simulated by replacing the intensity value 7 of
each pixel with a random number from a Poisson distri-
bution of expectation value 4 = I. Fig. 2 illustrates the ef-
fect of such noise on a simulated point blob. All random
numbers are generated independently for every trial and
frame. The resulting frame images (cf. Fig. 3, left panel)
are stored as unscaled 16-bit TIFF files.

The SNR is calculated as the difference in expected
intensity levels between the particle points v and the

Fig. 3. Example benchmark tracks. Each test case consists of an image
sequence of 100 frames of 10 moving simulated points, yielding 1000
independent displacement measurements 4 with known exact values
a = Ax. First (left panel) and last (right panel) frame of an example
with Ax = 0.27 pixel, peak level v = 23.9, and background level b = 10
(SNR =2.846) are shown with lines depicting trajectories as recon-
structed by the presented tracking algorithm. All 10 trajectories are of
full length 100. Insets show enlargements as indicated.

Intensity [a.u.]
=

n
oo

10

5 x [pixel]

y [pixel] 00

Fig. 2. Example of a simulated particle observation before (left panel) and after (right panel) addition of Poisson noise. Inset images show the
particle images whose pixel intensity distributions are depicted in the surface plots below. The example shown uses a peak level of v =23.9 and a

background level of b = 10, thus having an SNR of 2.846.
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background b, divided by the noise level g, on the par-
ticles. For the employed Poisson noise this is ¢, = /v
and thus:

v—>b
SNR = 7
Note that this is the most conservative definition of
SNR possible. Using the noise level of the background
would lead to much larger values. These would be inap-
propriate (Cheezum et al., 2001) since the stronger noise
on the bright blobs is the one that actually influences the
feature point detection and causes its inaccuracy. The
peak pixel levels used in the present benchmark cases
are given in Table 1 along with the corresponding result-
ing SNR values according to Eq. (19).

Accuracy and precision of the algorithm are quanti-
fied for different SNR and Ax using, respectively, the
track bias

(19)

bias = (a — a), (20)
and its standard deviation

o= ((a— (@)} (21)
Table 1

Peak pixel levels v and resulting SNR used for the cases in Fig. 4. The
background level is fixed at b = 10

Peak level v SNR
15 1.291059
18.58 1.990510
23.9 2.846111
28.73 3.494379
38.1 4.556798
60.8 6.516668
97 8.832892
154.7 11.632132
246.6 15.067460
393.3 19.326731
627.1 24.642859
1000 31.306549

Bias [pixel]

SNR [-]

o [pixel]

Here, () denotes the ensemble average over independent
trials, a the reconstructed particle displacements from
the tracking algorithm, and « the actual exact displace-
ments. The tracking algorithm runs on a 3.06 GHz Intel
Pentium 4 server, taking less than 1s to track 1000 inde-
pendent displacements.

Fig. 3 shows both the first and the last frame at
SNR = 2.85. The trajectories as reconstructed by the
tracking algorithm are shown as solid lines in the right
panel. The bold circles in Fig. 4 show the results for
accuracy and precision versus SNR for a fixed displace-
ment of Ax =0.27 pixel. Fig. 5 shows bias and standard
deviation versus the magnitude of the actual particle
displacement per frame between 0 and 1 pixel in steps
of 1/11 pixel for a fixed SNR of 31.3.

The critical SNR for reaching an accuracy better than
0.1 pixel is around 4.2 for the present algorithm, indicat-
ing good capability to handle noisy images. The preci-
sion ¢ is better than 1 pixel for all SNR larger than
1.3, cf. Table 2. For SNR better than 7.5, both ¢ and
bias are below 0.1 pixel.

The presented algorithm shows about the same accu-
racy as the more complex and computationally intense
Gaussian fit and cross-correlation methods, while hav-
ing better precision. The smooth and monotonic decay
of both bias and standard deviation with increasing
SNR are favorable properties of the present method
and the bias is virtually constant (and low) for all step
displacements Ax > 0.1 pixel. The fact that the present
algorithm avoids fitting a specific point spread function
shape to the blobs in the frame images not only results in
faster execution speed, but also renders it more general
with respect to size and shape of the tracked objects.

In a second test, the simulated points are moving
along straight lines of random angular orientation, thus
exhibiting truly two-dimensional motion. Trajectories
can intersect and points can exit the image, in which case
they reappear on the opposite side (periodic boundary

10 10 10
SNR []

Fig. 4. Left panel: bias versus SNR for a point blob moving at 0.27 pixel/frame. Right panel: standard deviation versus SNR for the same cases.
Each point is averaged from 1000 independent measurements. The present algorithm (bold circles) is compared to the data of Cheezum et al. (2001):
Gaussian fit (squares), centroid (triangles), sum of absolute differences (stars), cross-correlation (diamonds).
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Fig. 5. Left panel: bias versus actual distance moved per frame for a point blob at SNR=31.3. Right panel: standard deviation versus actual distance
moved per frame for the same cases. Each point is averaged from 1000 independent measurements. The present algorithm (bold circles) is compared
to the data of Cheezum et al. (2001): Gaussian fit (squares), centroid (triangles), sum of absolute differences (stars), and cross-correlation (diamonds).

Table 2

Estimated SNR at which the bias drops below 0.1 pixel and ¢ below 1
pixel. Comparison of the present algorithm with the ones tested by
Cheezum et al. (2001)

Algorithm SNR 1bias SNR| o,

Present work 4.2 <1.3

Gaussian fit (Cheezum et al., 2001) 4.2 4.0

Centroid (Cheezum et al., 2001) 7.8 6.6

Sum of absolute differences 6.9 8.1
(Cheezum et al., 2001)

Cross-correlation (Cheezum et al., 2001) 4.2 6.3

conditions), and a new trajectory starts. This test mimics
the situation of finite dilution. The same background
and peak values are used as for the previous test (cf. Ta-
ble 1), but bias and standard deviation are computed on
the actual positions (x,y)—rather than the displacements
a—as:

bias, = (¥ — x); bias, = (¥ — ), (22)

0.25

0.2

0.15

0.1

0.05

Bias [pixel]

-0.05

-01

SNR []

and
o, = (((F—x) = (E -0
o, = (=) = (G-, (23)

where () now denotes the ensemble average over all
point detections in a movie. The results are shown in
Fig. 6. While the standard deviation is comparable to
Fig. 4, the bias values are much lower than in the previ-
ous test. This is due to the fact that bias and standard
deviation are correlated in the one-dimensional case,
whereas they are independent here.

To test the trajectory linking in the case where two
particles cross, we consider test movies showing 10 hor-
izontally moving points and 10 vertically moving points,
such that each pair of points exactly coincides in a certain
frame. The background intensity is again fixed at 10, and
the peak intensity of the horizontally moving points is
fixed at 23, corresponding to an SNR of 2.71. The peak
intensity of the vertically moving points is gradually in-

10

10

o [pixel]

10

10 10’ 10°
SNR [-]

Fig. 6. Left panel: bias versus SNR for 10 point blobs moving at random angular orientations with 0.27 pixel/frame. Right panel: standard deviation
versus SNR for the same cases. Each point is averaged from 3500 independent measurements. Circles indicate the x component, squares the y

component of the respective measures.
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Fig. 7. Sequence of two moving points with the upper one missing in two frames, e.g., due to occlusion or over-sensitive thresholding. The link range
is R = 3, thus taking three subsequent frames into account for each linking step. The panel to the very right shows the correct recovery of the broken

trajectory. (Image intensities are inverted for printing purposes.)

creased. Whenever two particles coincide, only one point
observation will be detected. Since the linking algorithm
does not allow for a point to be part of several links in
any frame, one of the two trajectories must break. In
the case where the two point sets are of equal brightness,
the choice is random. In 50% of the cases, the vertical tra-
jectory is continuous and the horizontal one pauses, and
vice versa for the other 50%. If the point intensities (1)
however differ, the trajectory of the brighter particle is
consistently continued, whereas the dimmer one suffers
a gap. This is due to the particular choice of linking cost
function, Eq. (14), where differences in m are taken into
account, and the fact that the brighter particle “masks”
the dimmer one in the local maximum selection. A differ-
ence in SNR of 0.15 is sufficient for this to work in 100%
of the cases.

The case where a particle temporarily escapes detec-
tion is considered in Fig. 7. Extending the link range
to R>1 future frames (cf. Section 2.3), successfully
prevents gaps in the resulting trajectories, as both points
are available for linking.

4. Feature point tracking and trajectory analysis: case
studies

Three feature point tracking applications from cell
biology are considered:

(1) tracking of endosomes containing fluorescently
labeled low-density lipoprotein (Dil-LDL)
molecules,

(2) tracking of internalized Adenovirus-2 (Ad-2) par-
ticles moving along microtubules, and

(3) tracking of Qdots on the plasma membrane.

These case studies help to demonstrate the robustness
and applicability of the algorithm for a wide variety of
“feature points.” In addition, quantitative analysis
based on MSS is introduced to quantify the related dis-
persive properties.

4.1. Moment scaling spectrum of endosome motion

In the first application, endosomes of 3T6 mouse fibro-
blast cells are imaged. LDL is fluorescently labeled with

Dil red. Endosomes containing Dil-LDL are imaged
using TIRFM at 20 Hz with 80 nm/pixel resolution.
Two thousand 16-bit TIFF frames are recorded. Fig. 8
shows a few sample frames. The parameters used in track-
ing are listed in Table 3. The particle is successfully traced
over 1446 frames (Fig. 9, top panel) before it fades out.
The analysis of the motion is based on calculating the
moments of displacement. Let x,(n) the position vector
(x¢(n),yn)) on trajectory ¢ at time nAz for n=0, 1,
2,..., M,—1 where M, is the total number of point
detections in trajectory /, i.e., its length. At is the real-
time difference between two subsequent frames. The
moment of order v for a specific frame shift An, corre-
sponding to a time shift ¢ = AnA¢, is defined as

l My—An—1

T h O A x4

n=0

‘le"e(Al’l) =

where || denotes the 2-norm (Euclidean norm). Missing
summands due to non-existing frame numbers (R > 1) in
the trajectory are skipped and the normalization factor

’o
Dil - LDL
Os 25s 50s 75s

Fig. 8. Time-lapse frame image sequence of a Dil-LDL containing
endosome (arrow head) in a 3T6 mouse fibroblast observed using
TIRFM and 20 frames/s. Each image shows a 12 pm x 12 um region
on 150 x 150 pixels corresponding to a resolution of 80 nm/pixel. The
time difference in seconds to the first image of the sequence is given in
the lower-right corner of each frame. Using R =1, the particle is
tracked over 1446 frames before fading out. (Image intensities are
inverted for printing purposes.)

Table 3
Summary of tracking algorithm parameter settings used in the
examples of this section

Parameter Dil-LDL Ad-2 Noc Qdot
Particle radius w [pixel] 4.0 2.0 3.0 3.0
Intensity percentile r [%0] 0.1 2.0 1.0 0.05
Cutoff score T [-] 0.0 1.0 4.0 0.0
Maximum step length L [pixel] 5.0 5.0 1.0 1.0
Link range R [frames] 1 4 2 1 or10
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Fig. 9. Tracking an endosome containing fluorescent Dil-LDL. Right panel: xy-path of the particle as tracked from the video recording. Middle
panel: MSD of the track as defined in Eq. (24). The dashed line is the result of a linear least squares fit to determine the slope and the diffusion

constant (values given in the figure). Right panel: MSS of the track.

is accordingly adjusted. The special case of v=2 is
called mean square displacement (MSD).

To quantify the particle motion (Ferrari et al., 2001),
these moments are calculated for v=0, 1, 2, ..., 6 and
An=1,..., M,/3, and are drawn versus 6t = AnAt in a
double logarithmic plot (see, e.g., middle panel of
Fig. 9). Assuming each moment to depend on the time
shift in a power law p,(d¢) o< o¢" (Ferrari et al., 2001),
all scaling coefficients v, are determined by a linear least
squares regression to logu, versus logdt. In addition,
the generalized two-dimensional diffusion coefficients
of all orders v>0 are obtained from the y-axis inter-
cepts yo as: D, = (2v)"' -exp(yy). D, corresponds to
the regular diffusion constant in the case of strongly
self-similar, pure diffusion. The plot of v, versus v is
called MSS according to Ferrari et al. (2001). For all
strongly self-similar processes, the MSS shows a
straight line through the origin as vy, is always equal
to 0. The slope of this line is an excellent measure for
the type of the observed motion. Finding this slope
using a linear least squares fit is a very robust proce-
dure due to the almost perfect linearity of the MSS
for strongly self-similar processes. Moreover, the MSS
slope has good and uniform sensitivity to detect differ-
ent modes of motion within the same trajectory. For
normal (free) and strongly self-similar diffusion, the
MSS slope is 1/2. A slope of 1 indicates ballistic, i.e.,
uniform and directed motion. A slope of 0 characterizes
a stationary object. The region between 0 and 1/2 is the
sub-diffusive regime (e.g., confined diffusion) and be-
tween 1/2 and 1 is the super-diffusive regime (e.g., dif-
fusion with overlayed deterministic drift, Lévy flights).
Every strongly self-similar process will yield scaling
coefficients vy, that linearly depend on v. A curved or
kinked plot is indicative of a weakly self-similar process
(Ferrari et al., 2001).

The results of the MSS analysis for Dil-LDL are
shown in the middle and right panels of Fig. 9. The
MSS shows an almost perfect straight line of slope
1/2. The particle thus undergoes free and normal diffu-
sion. The diffusion coefficient is determined from the
second moment to be D, = 1.7 x 10> pm?/s. The inten-

sity of the endosome is shown over time in the left panel
of Fig. 13. The continuous fading could be due to pho-
tobleaching or the endosome moving into the cell and
thus out of the TIRF region.

4.2. Tracking and analysis of Adenovirus-2 trafficking

The tracking of microtubule-dependent trafficking of
intracellular Ad-2 serves as a test for the algorithm in
cases of fast directed motion. We analyze the original
16-bit frame images of Suomalainen et al. (1999) that
were tracked by hand for the original publication. Fluo-
rescently labeled internalized Ad-2 particles in wild-type
TC7 cells are imaged using a wide-field fluorescence
microscope. The resolution is 0.15 um/pixel and the time
interval between frames is 1.3 s. The complete protocol
is defined by Suomalainen et al. (1999). Fig. 10 shows
a time-lapse sequence of some frames. The unspecific
photobleaching is clearly visible. The total movie is
104 frames long. Tracking is done using the parameter
values given in Table 3 and yielded 73 tracks of lengths
between 60 and 104 frames. Three example tracks are
shown in the left panel of Fig. 11 and the intensity of
virus particle (a) over all 104 frames is shown in the mid-
dle panel of Fig. 13.

The control experiment considers Ad-2 in HeLa cells
treated with nocodazole, a microtubule depolymerizing
drug. The tracker parameters are given in column

Rdab)e®.| © (b} (b) o (b)
‘O CONE S Te |
I % ) (©)
> R

Ad2(a) ops| (a) 31.2s f(a) 63.7s (59133.95

Fig. 10. Time-lapse frame image sequence of Ad-2 moving along
microtubules in TC7 cells observed using fluorescence wide-field
microscopy and 1.3 s/frame. Each image shows a 37.65 um X 37.65 um
region on 251 x 251 pixels corresponding to a resolution of 0.15 um/
pixel. The time difference in seconds to the first image of the sequence
is given in the lower-right corner of each frame. All indicated particles
are tracked over the full 104 frames. (Image intensities are inverted for
printing purposes.)
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Fig. 11. Trafficking of Ad-2 particles along microtubules. Left panel: xy-path of three sample particles as tracked over all 104 frames of the movie.
All trajectories are shifted to start at point (0,0). Stretches of directed motion with intermediate random motion are visible. Right panel: scatter plot

of overall diffusion constants D, and MSS slopes for all tracks of the

Fig. 12. Time-lapse frame image sequence of a Qdot (arrow head) on
the plasma membrane of 3T6 mouse fibroblasts observed using
TIRFM and 20 frames/s. Each image shows a 12 um X 12 um region
on 150 x 150 pixels corresponding to a resolution of 80 nm/pixel. The
time difference in seconds to the first image of the sequence is given in
the lower-right corner of each frame. Using R = 1, the particle can be
tracked over 21 frames, with R = 10, the longest trajectory spans 1068
frames. (Image intensities are inverted for printing purposes.)

“Noc” of Table 3. The total length of the control movie
is 275 frames. Twenty-seven tracks of lengths between
80 and 252 frames are extracted. MSS analysis as out-
lined in the previous case is done for all recorded Ad-2
tracks. Fig. 11 shows a scatter plot of all diffusion coef-
ficients and MSS slopes for the two experiments. The
existence of biased/directed motion in the wild-type
experiment is evident from the MSS slope values above
0.5. Still a significant fraction of trajectories with MSS
slopes around or below 0.5 exists which means that
those particles are not always transported actively. As
can be seen from the left panel of the figure, intermedi-

wild-type experiment (circles) and the nocodazole control (crosses).

ate pauses or changes in direction exist, causing the
overall average MSS slope to drop. The nocodazole con-
trol never exhibits directed motion and particles are at
most freely diffusive, which provides the evidence for
the directed motion to depend on microtubules (Suom-
alainen et al., 1999).

4.3. Tracking of quantum dots

We consider tracking of Qdots to demonstrate the
function of the multi-frame linking algorithm as de-
scribed in Section 2.3 for R > 1. Quantum dots (Quan-
tumDot, www.qdots.com) are extremely bright and
photostable fluorescent nano-particles. Their signal
strength makes them a true alternative to fluorescent pro-
teins. Quantum dots however exhibit strong fluctuations
in their emission intensity (“‘blinking”), which compli-
cates the linking of point detections into trajectories.

Biotinylized ConcanavalinA is bound to 3T6 cells for
30 s in PBS. The cells are dipped in imaging medium and
0.2 uM Streptavidin-coupled 25 nm Qdots are added.
Using TIRFM, 2000 frames are recorded at 20 Hz video
rate with 80 nm/pixel resolution. The images are stored
as uncompressed 16-bit TIFF files.

Fig. 12 shows a few sample frames from the movie.
The blinking is clearly visible as the Qdot has vanished
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Fig. 13. Particle intensities n1, over time as returned by the tracking algorithm. The time evolution of the intensity of each of the three test cases is
shown. The sum of all pixel values within the particle radius w is computed as intensity measure 1, cf. Eq. (8). The strong intensity fluctuations
(“blinking”) of the Qdot can clearly be seen in the right panel. The continuous intensity decay of Dil-LDL and Ad-2 could be due to photobleaching
or the particle moving out of focus.
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in the second image. Good parameter settings for the
tracking algorithm are determined using the graphical
user interface. Their values are given in Table 3. Using
two subsequent frames to perform trajectory linking
(i.e., R=1), the longest track that can be extracted is
21 frames in length. Setting R = 10 increases the track
length to 1068 frames. This is a clear advantage since
tracks as short as those in the R = 1 case would not al-
low to determine diffusion constants or other properties
of the motion with significant statistics.

The right panel of Fig. 13 shows the time evolution of
the fluorescence intensity of the sample Qdot. The
strong fluctuations (“‘blinking’’) are clearly visible, as
well as its photostability and brightness. The Qdot in
this example is almost stationary. The MSS shows a
straight line of slope 0.083 (figure not shown), and the
diffusion constant is below the detection limit.

4.4. Experimental tracking quality

To assess the tracking quality, the SNR of the images
are estimated using the noise in the bright image regions
as outlined earlier. The program used to estimate the
SNR is tested on the synthetic images of known SNR
from Section 3. The SNR values are correctly determined
within +7%. The mean measured SNR of both the Dil-
LDL and the Qdot samples is 3.1, averaged over all
frames. The background intensity of the Qdot video is
more than three times larger than the one of the Dil-
LDL case. Using the results from Section 3, this SNR
corresponds to both a tracking accuracy and precision
of about 0.2 pixel (16 nm). The experimentally measured
track standard deviation in the Qdot example is 0.4 pixel,
which is consistent with the very small value of its MSS
slope and illustrates the sensitivity of the latter measure.

Positioning errors result in observed apparent sub-
diffusion (Martin et al., 2002). Using the model of Mar-
tin et al. (2002), the measured diffusion coefficient for
the Dil-LDL containing endosome, and above estimate
of the positioning error, the apparent slope in the double
logarithmic MSD plot of Dil-LDL (Fig. 9, middle pan-
el) is predicted to be 0.933 <y, < 1. This is in excellent
agreement with our measured v, of 0.973 and supports
the conclusion that the motion of the endosome is nor-
mal diffusion, as properly indicated by the MSS slope.

5. Conclusions

In this article, we presented a computationally effi-
cient and robust method for two-dimensional feature
point tracking that can be used for quantitative time-re-
solved studies of particle trajectories as they appear in
several applications in cell biology. The presented meth-
od was demonstrated to be of high accuracy and preci-
sion even at moderate SNR, and to provide sub-pixel

accuracy in all practical situations. The absence of any
intrinsic models regarding the motion of the particles
that are being tracked, in combination with its robust-
ness and efficiency, makes the method particularly well
suited for biological applications relying on trajectories
developed by fluorescence microscopy. If available, pri-
or knowledge about the underlying physical processes
can still be incorporated by suitably choosing the cost
functional for the trajectory linking.

The presented method emphasizes computational effi-
ciency and ease of use. The former goal is motivated by
our observation that many available feature point track-
ing algorithms suffer from poor computational perfor-
mance or large memory requirements if long sequences
of large images are to be processed (Vallotton et al.,
2003). The presented implementation is capable of
tracking a sequence of three thousand 214 x 214 pixel
TIFF images in less than 15s on a 3.06 GHz Intel Pen-
tium 4 desktop computer. Ease of use is achieved by
minimizing the number of user-set parameters of the
algorithm and providing a user-friendly graphical user
interface. The presented implementation only requires
the approximate particle radius w, the intensity percen-
tile r, the cutoff score T for the non-particle discrimina-
tion, the maximum link length L, and the number of
future frames for the linker R to be set by the user. Of
these five parameters, w and R are trivial. The remaining
three have a direct physical meaning and can easily be
determined by inspection of a few frames in the movie.
The graphical user interface provides additional guid-
ance and support in this process.

The presented case studies have shown that the algo-
rithm performs well on non-smooth (virus particle track-
ing) as well as smooth (endosome tracking) motions. The
Qdot example demonstrated the capabilities of handling
blinking objects and creating continuous trajectories
from their intermittent detections. The presented MSS
analysis is introduced as an appropriate way of analyzing
and classifying the recorded trajectories.

The algorithm presented in this paper is not intrinsi-
cally limited to two dimensions. Its application to three-
dimensional data is straightforward, provided such data
are available. The following limitations are however
present: in the feature point detection, the algorithm is
limited to small (compared to background variations)
spherical particles or point spread blobs and the trajec-
tory linking is limited by the specific cost functional one
defines. For the cost functional used in this article, the
limitation is obviously given by the criterion that two
equally bright and equally large particles must always
be separated by more than the distance they move per
frame. Using different cost functionals this could be re-
laxed at the expense of other limitations such as a loss of
universality due to prior information about the type of
motion. Furthermore, we assumed that every detected
point corresponds to exactly one particle. The algorithm
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is thus unable to resolve particle coalescence or division,
or to yield two continuous trajectories if two particles
exactly cross in space and time. The non-particle dis-
crimination step is, if used at all, limited by the assump-
tion that the majority of the detected points corresponds
to particles of the desired kind.

The presented algorithm is implemented in C as a
multi-user multi-tier client-server application. In our
experience, this implementation is fast and stable even
under high load with several concurrent users. The
graphical user interface is implemented in Java and runs
on different computer platforms. The source code of
both implementations is freely available from the
authors under the terms and conditions of the ICoS soft-
ware release agreement.
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