Principal component analysis (PCA)

1 Introduction

A data set \(\mathcal{X} \in \mathbb{R}^l \) is said to have intrinsic dimensionality \(m \leq l \) if \(\mathcal{X} \) can be (approximately) described in terms of \(m \) free parameters.

Example: Assume vectors in \(\mathcal{X} \) are generated as functions in terms of \(m \) random variables.

\[
x = g(u_1, \ldots, u_m), \quad u_i \in \mathbb{R}, \quad i = 1, \ldots, m.
\]

The respective observation vectors will lie along a manifold whose form depends on the vector valued function \(g : \mathbb{R}^m \rightarrow \mathbb{R}^l \). Assume the following form of function \(g \):

\[
x = [r \cos \theta, r \sin \theta]^T, \quad r = \text{const}, \quad \theta \in [0, 2\pi]
\] (1)

In this case, one parameter suffices to describe the data. If a small noise is added then data will cluster around the circumference (see Fig. 1). Statistically this implies that the data will be correlated.

![Figure 1: A sample of points that can be well described using a single parameter \(\theta \) (see Eq. 1).](image)

2 PCA

Assume observed data are generated by a system or a process that is driven by a relatively small number of latent (not directly observable) variables. The goal
Figure 2: PCA maximises the variance of points. If you are to select a single principal component you want it to account for most variability possible so the compact representation collects the most “uniqueness” from the data set.

is to learn this latent structure. Given a set of observation vectors (data)

$$x_n \in \mathbb{R}^l, \quad n = 1, 2, \ldots, N$$

which is assumed to be of zero mean (else the mean is subtracted), PCA determines the subspace of dimension $m \leq l$ such that after the projection to this subspace, the statistical variation of the data is optimally retained.

Subspace has m mutually orthogonal axes. They are computed so that the variance of the data after projection on the subspace is maximised (see Fig. 2). PCA does not increase the variance. It rotates the data in such a way to align the directions in which to spread out the most with principal component.

First assume $m = 1$ and the goal is to find a single direction in \mathbb{R}^l so that the variance of the corresponding projected points is maximised.

Let u_1 denote the principal axis, then the covariance of projection is

$$I(u_1) = \frac{1}{N} \sum_{n=1}^{N} (u_1^T x_n)^2 = \frac{1}{N} \sum_{n=1}^{N} (u_1^T x_n)(x_n^T u_1) = \frac{1}{N} \sum_{n=1}^{N} u_1^T x_n x_n^T u_1$$ \hspace{1cm} (2)

$$I = u_1^T C u_1$$ \hspace{1cm} (3)

with the sample covariance matrix of the data

$$C = \frac{1}{N} \sum_{n=1}^{N} x_n x_n^T.$$ \hspace{1cm} (4)
How to maximise I with respect to u.

This must be a constrained minimisation else $\|u\| \to \infty$ will do the job. The appropriate constraint is $u_1^T u = 1$. We use now Lagrange multipliers so

$$u_1 = \arg \max_u u^T C u$$

s.t. $u^T u = 1$ (5)

Constrained Optimization problem with a Lagrangian by

$$\mathcal{L}(u, \lambda) = u^T C u - \lambda (u^T u - 1)$$

$$\frac{\partial \mathcal{L}}{\partial u} = 0 \implies Cu = \lambda u$$

so u is eigenvector of C and

$$I(u) = u^T C u = u^T \lambda u = \lambda.$$ (6)

So $I(u)$ is maximised if u_1 is the eigenvector that corresponds to the maximum eigenvalue. C is symmetric and positive semidefinite so all eigenvalues are positive. The second principal component is obtained so that $u_2 \perp u_1$ and maximises the variance in that direction.

So it can be shown that the second principle axis is the eigenvector corresponding to the second largest eigenvalues λ_2.

In summary:

1. evaluate the mean $\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$

2. form $C = \frac{1}{N} \sum_{n=1}^{N} (x_n - \bar{x})(x_n - \bar{x})^T$

3. find M eigenvectors corresponding to M largest eigenvalues

 for $D \times D$ matrix (this costs $O(D^3)$)
 Power method: $O(MD^2)$ for M best

3 Minimum error formulation

Introduce a complete orthonormal set of D dimensional basis vectors u_i where $i = 1...D$

$$u_i^T u_j = \delta_{ij}$$

(10)

Basis is complete so that

$$x_n = \sum_{i=1}^{D} \alpha_i u_i$$

(11)

note that this corresponds to a change of the coordinate system.

Inner product with u_j:

$$x_n^T = \sum_{i=1}^{D} \alpha_i u_i^T$$

and

$$x_n^T u_j = \sum_{i=1}^{D} \alpha_i u_i^T u_j$$

(12)
\[\alpha_{nj} = x_n^T u_j \]

(13)

So

\[x_n = \sum_{i=1}^{D} (x_n^T u_i) u_i \]

(14)

But we do not wish to perform a rotation, we wish to perform a restricted representation using \(M < D \) vectors.

The \(M \)-dimensional landscape can be represented without loss of generality by the \(M \) vectors

\[\hat{x}_n = \sum_{i=1}^{M} z_{ni} u_i + \sum_{i=M+1}^{D} b_i u_i \]

(15)

\(z_{ni} \) depend on the data points and \(b_i \) are constants. Choose \(u_i, z_{ni} \) and \(b_i \) to minimise distortion.

Define

\[J = \frac{1}{N} \sum_{n=1}^{N} \| x_n - \hat{x}_n \|^2 \]

(16)

Substitute for \(\hat{x}_n \), take derivative \(\frac{\partial J}{\partial z_{ni}} = 0 \) and using orthogonality we obtain

\[z_{nj} = x_n^T u_j, \text{ for } j = 1...M \]

(17)

What if we had chosen another cost function?

Setting \(\frac{\partial J}{\partial b_i} = 0 \) and using again orthogonality, we get

\[b_j = \overline{x}^T u_j, \ j = M + 1...D \]

(18)

where \(\overline{x} \) is the sample mean.

\[x_n - \overline{x}_n = \sum_{i=M+1}^{D} (x_n - \overline{x})^T u_i u_i, \text{ where } x_n - \overline{x}_n \text{ is the distortion} \]

(19)

so orthogonal to the principal subspace.

We minimise the distortion measure

\[J = \frac{1}{N} \sum_{n=1}^{N} \sum_{i=M+1}^{D} (x_n^T u_i - \overline{x}^T u_i)^2 = \sum_{i=M+1}^{D} u_i^T C u_i \]

(20)

3.1 Minimization of \(J \) with respect to \(u_i \) constraint else \(u_i = 0 \)

Before a general solution, we try the intuition for \(D = 2 \) and \(M = 1 \). Therefore

\[J = u_2^T C u_2 \quad \text{and} \quad u_2^T u_2 = 1 \]

(21)
\[J = \mathbf{u}_2^T C \mathbf{u}_2 + \lambda_2 (1 - \mathbf{u}_2^T \mathbf{u}_2) \]

(22)

Set \(\frac{\partial J}{\partial \mathbf{u}_2} = 0 \) and obtain

\[C \mathbf{u}_2 = \lambda_2 \mathbf{u}_2 \]

(23)

which is an eigenvalue problem. Note that \(J = \lambda_2 \).

So we minimise the distortion by choosing the \(\mathbf{u}_2 \) that corresponds to the smaller from the two eigenvalues. Thus the principal space is along the eigenvector having the largest eigenvalue.

Maximise variance along a direction that passes through the mean by solving:

\[C \mathbf{u}_i = \lambda_i \mathbf{u}_i \]

(24)

and distortion is

\[J = \sum_{i=M+1}^{D} \lambda_i \]

(25)

4 PCA for high dimensional data

E.g. apply PCA to \(O(100) \) images each of which corresponds to a vector in a space of potentially several million dimensions (corresponding to three color values for each of the pixels in the image).

In a \(D \)-dimensional space, a set of \(N \) points, where \(N < D \), defines a linear subspace whose dimensionality is at most \(N - 1 \) and so there is little point in applying PCA for values of \(M > N - 1 \).

If we perform PCA we will find that at least \(D - (N - 1) \) of the eigenvalues are zero.

Also note that with a cost of \(O(D^3) \), most PCA on images will be very expensive.

HOW TO RESOLVE THIS?

\(X \) is \(N \times D \), dimensional centered matrix whose \(n \)-th row is \((X_n - \bar{X})^T \). The \(D \times D \) covariance matrix is

\[C = \frac{1}{N} X^T X \]

(26)

which leads to the eigenvalue problem:

\[\frac{1}{N} X^T X \mathbf{u}_i = \lambda_i \mathbf{u}_i \]

(27)

Pre-multiply with \(X \) and get

\[\frac{1}{N} X X^T (X \mathbf{u}_i) = \lambda_i (X \mathbf{u}_i) \]

(28)
Here we can define \(\mathbf{v}_i = X \mathbf{u}_i \) and get:

\[
\frac{1}{N} XX^T \mathbf{v}_i = \lambda_i \mathbf{v}_i,
\]

which is the eigenvalue problem in the \(N \times N \) space. Note that the \(N - 1 \) eigenvalues \(\lambda_i \) are equal to the first \(N - 1 \) eigenvalues of the matrix \(X^T X \) (which has \(D - (N - 1) \) zero eigenvalues). The computational cost is decreased from \(O(D^3) \) to \(O(N^3) \), and we can derive the eigenvectors of \(X^T X \) by pre-multiplying eq 29 by \(X^T \):

\[
\frac{1}{N} (X^T X)(X^T \mathbf{v}_i) = \lambda_i X^T \mathbf{v}_i
\]

This is again the original eigenvalue problem of the matrix \(C = X^T X \) where we already have computed the eigenvectors \(X^T \mathbf{v}_i \) and eigenvalue \(\lambda_i \). Therefore the eigenvectors of \(XX^T \) can be written as:

\[
\mathbf{u}_i = \frac{1}{\sqrt{N \lambda_i}} X^T \mathbf{v}_i
\]

Therefore the PCA of a dataset \(X \) where \(N < D \) is performed by solving the eigenvalue problem for \(XX^T \), which yields eigenvectors that lie in a \(N \)-dimensional space, and then computing the principal components with equation 31.

5 Kernel PCA

Given a dataset of \(d \) dimensional vectors \(N_n \) with \(n \in \{1, N\} \), it is not in general possible to linearly separate them along \(M < d \) principal components. Kernel PCA methods introduce a non-linear kernel \(\phi \) that maps the data onto an \(M > d \) dimensional space, where it is more likely to find linear relations that describe the features of the data. Therefore each point \(\mathbf{x}_n \) has a corresponding point \(\phi(\mathbf{x}_n) \) in feature space. Assuming that the data is centered in feature space (\(\sum_{n=1}^{N} \phi(\mathbf{x}_n) = 0 \)), the covariance matrix of the dataset projected in feature space is given by:

\[
C = \frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}_n)\phi(\mathbf{x}_n)^T
\]

The PCA can be written in feature space as the eigenvalue problem:

\[
C \mathbf{v}_i = \lambda_i \mathbf{v}_i
\]

Kernel PCA methods solve this eigenvalue problem without having to work in the potentially high-dimensional feature space.
6 Auto-associative NN

Consider a Neural Network (NN) mapping the input $x_i \in \mathbb{R}^d$ onto an output $\tilde{x}_i \in \mathbb{R}^d$ through an intermediate feature space $z_i \in \mathbb{R}^M$ (see Fig. 3):

$$z_i = \phi_E(x_i), \quad \tilde{x}_i = \phi_D(z_i)$$ \hspace{1cm} (34)

Here ϕ_E and ϕ_D denote the mapping to and from feature space defined by the weights w of the NN. One example of such mapping are the linear relations $z_i = \Phi_E x_i$ and $\tilde{x}_i = \Phi_D z_i$, where Φ_E and Φ_D are matrices whose elements are defined by the weights w. Auto-associative mapping consists in learning the weights w such that the output \tilde{x}_i replicates the input x_i. This is achieved by minimizing the cost function:

$$\mathcal{L}(w) = \frac{1}{2} \sum_{n=1}^{N} \| \tilde{x}_i - x_i \|^2$$ \hspace{1cm} (35)

If both ϕ_E and ϕ_D are linear relations (i.e. if the activations of all hidden units of the network are linear functions) then it can be shown that $\mathcal{L}(w)$ has an unique global minimum and the network performs a projection onto the M-dimensional subspace which is spanned by the first M principal components of the data.