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Abstract- Single- and multicriteria evolution strate-
gies are implemented to optimize micro-fluidic devices,
namely the shapeof a microchannelusedfor bioanalysis
and the mixing rate in a micromixer usedfor medical ap-
plications. First, multimemberedevolution strategiesem-
ploying mutative stepsizeadaptation are combinedwith
the Strength Pareto Approach. In order to support tar-
getting, an extension of the Strength Pareto Evolution-
ary Algorithm is proposed. Applied on the optimization
of the microchannel,thesealgorithms suggesta novel de-
sign with impr ovedpropertiesover traditional designs.A
comparisonwith a gradient method is presented.Second,
an evolution strategy with derandomizedself-adaptation
of the mutation distrib ution is used to optimize the mi-
cromixer. The resultsagreewell with dynamical systems
theory.

1 Intr oduction

We apply evolution strategies to optimizationproblemsfor
microdevicesusedin medicalapplications.In particular, the
shapeof a microchannelandthemixing ratein a micromixer
areoptimized.Optimizingmicrodevicespresentsachallenge
dueto the lack of knowledgeto guidethedesignanddueto
the difficulty to formulategradientalgorithmsfor the gov-
erningequations.In conjunctionwith efficientcomputational
methodsfor the simulationof suchdevices,evolutionaryal-
gorithmsarehighly suitablemethodsfor this applicationdue
to their portability andinherentparallelizationmakingpossi-
ble thereductionof time to market in suchdesigns.

Besidesclassicalsingleobjective evolution strategies,we
alsopresentmultiobjective algorithmsthat find a setof op-
timal trade-off fronts, the so-calledPareto-optimalset, for
problemswith multiple,conflictinggoals.An existingpower-
ful multicriteriaalgorithmis embeddedin anevolution strat-
egy andextendedfor thepurposeof targetting.

Section2 of this paperintroducesthe evolutionaryalgo-
rithmsimplementedin thiswork. Section3 showstheirappli-
cationon thedesignof a microchannelwhile theapplication
on a micromixer is presentedin Section4. Conclusionsare
drawn in Section5.

2 Evolutionary Optimization Methods used in
this Work

We usethefollowing evolutionaryoptimizationstrategies:� The(1+1)evolutionstrategy

� The StrengthParetoApproachfor multiobjective op-
timization[Zitzler & Thiele(1999)] combinedwith an
evolution strategy usingmutative stepsizeadaptation
(seesubsection2.1)� The StrengthPareto Approach with Targetting (see
subsection2.2)� The derandomized( ���������
	�� evolution strategy with
covariancematrix adaptation(CMA-ES) with inter-
mediaterecombination[Hansen& Ostermeier(1996)],
[Hansen& Ostermeier(1997)]

2.1 The Strength Pareto Approach combined with an
Evolution Strategy

For this work, the Strength Pareto Approach for mul-
tiobjective optimization has been used becausecompar-
ative studies have shown that, among all major mul-
tiobjective EAs, the Strength Pareto Evolutionary Algo-
rithm (SPEA) is clearly superior ([Zitzler & Thiele(1999),
Zitzler, Deb& Thiele(2000)]). It is based on Pareto-
optimality and dominance. The algorithm as proposedby
[Zitzler & Thiele(1999)] was implementedin a restartable,
fully parallelcode.

Following thenotationin [Zitzler & Thiele(1999)], step7
requiresanalgorithmfor theselectionof individualsinto the
matingpool andStep8 includessomemethodfor dynamical
adaptationof stepsizes(i.e. mutationvariances).For this
paper, selectionwasdoneusingthefollowing binarytourna-
mentprocedure:

1. Selectat randomtwo individualsout of thepopulation

.

2. Copy theonewith thebetterfitnessvalueto themating
pool.

3. If thematingpool is full, thenstop,elsego to Step1

Adaptationof the stepsizeswas realizedusing the self-
adaptivemutative technique.Eachelementof thepopulation


andof thenon-dominatedindividualsin theexternalpop-
ulation


��
is assignedanindividualstepsizefor eachdimen-

sion. The stepsizesof all membersof the matingpool are
theneither increasedby 50%, cut to half, or kept the same,
eachat aprobabilityof 1/3.



2.2 StrengthParetoApproachwith Targetting

Compared to other methods like for example the En-
ergy Minimization Evolutionary Algorithm (EMEA) (cf.
[Jonathan,Zebulum,Pacheco& Vellasco(2000)]), theSPEA
hastwo majoradvantages:it findsthewholePareto-frontand
not just a singlepoint on it andit convergesfaster. The lat-
ter is a universaladvantagewhereastheformeris not. There
areapplicationswherea targetvaluecanbespecified.In this
case,onewantsto find thepoint on thePareto-frontwhich is
closestto the user-specifiedtarget (in objective space).This
eliminatestheneedto analyseall thepointsfoundby SPEA
in orderto make a decision.EMEA offerssucha possibility
but it convergesslower thanSPEA.Moreover, EMEA is not
able to find more thanonepoint per run. Thus,we extend
SPEAwith a targettingfacility that canbe switchedon and
off dependingonwhetheroneis looking for a singlesolution
or for thewholefront, respectively. We addedthis capability
to SPEAby thefollowing changesto thealgorithm:

1. BetweenStep6 andStep7 thefitnessesof all individ-
uals in



and


 �
arescaledby the distance� of the

individual from thetarget(in objective space)to some
power � : ����������� ����
This ensuresthat enough non-dominatedmembers
closeto the target will be found, so that the onewith
minimaldistancewill appearathigherprobability. The
parameter� determinesthesharpnessof theconcentra-
tion aroundthetarget.

2. Another external storage

���� �"!

is addedthat always
containsthe individual out of


 �
which is closestto

thetarget. Therefore,betweensteps4 and5, thealgo-
rithm calculatesthe distancesof all membersof


 �
to

thetargetandpickstheonewith minimaldistanceinto
 ��� ��!
. At all times,


 ��� ��!
containsonly onesolution.

3. At the endof the algorithm,not only the Pareto-front
is put out but also the solutionstoredin


 ��� �"!
. Note

thatdueto clusteringandremoval in

 �

, thesolutionin
 ��� ��!
is not necessarilycontainedin


 �
. Therefore,it

is anoptimalsolutionwhich otherwisewould not have
appearedin theoutput.

The algorithmhasbeenimplementedandtestedfor con-
vex andnonconvex testfunctions.Figures1 to 4 show some
results for the nonconvex testfunction #%$ as proposedin
[Zitzler, Deb& Thiele(2000)]:

&('*)+'*,-'*.0/ #%$2143�� � 1 �65 147 5 �8� � $9143��:�;=<+>%? /A@8BCB=D � $9143�� �FE 1G7�$9� �AH0H0H �:7�IJ�:K�1 �95 1G7 5 �L� E 147M$�� H0H0H �:7MIN�=�OQP /AR=/ 3 � 1G7 5 � HAH0H �=7 I �� 5 147 5 � � 7 5E 147 $ � HAH0H �:7 I � �TSVUXWJ�ZY I�*[ $ 7 � �+14\^] S �K�1 �65 � E � �_S ]`1 �65 � E � $
(1)

where\ is thedimensionof theparameterspaceand 7 �bac d � S8e . TheexactPareto-optimalfront is givenby
E 143�� �fS

.
The parametersof the algorithmweresetassummarizedin
Table1.

Parameter Value

Dimensionof parameterspace( \ ) 5
Sizeof population( 	 ) 50
Sizeof matingpool ( � ) 30
Sizeof non-dominatedset( g �

) 70
Numberof generations 250
Targetvaluefor 1 �65 � � $A� (0.5,0.7)
Concentrationparameter� 4

Table1: Settingsfor targettingSPEA

The chosentarget value is slightly off-front. Therefore,
thetargettingerrorwill not becomezero.Figure1 shows the
final populationafter250generationswithout targetting.The
diamondsindicatemembersof the external non-dominated
set (Pareto-optimalfront) whereasmembersof the regular
populationaredenotedby crosses.In Figure2 thesamerun
hasbeenrepeatedwith targetting.Figure3 shows thetarget-
ting errorasa functionof thegenerationnumber. Thedashed
line indicatesthetheoreticalminimumof thedistance.After
about80 to 100 generations,the point on the front which is
closestto thetargethasbeenfoundwith goodaccuracy. Fig-
ure4 shows thepathof


h��� ��!
towardsthe target. The jumps

aredueto thefact that the individual storedin

h�i�:��!

getsre-
placedassoonasanotherindividual is closerto thetarget.

Theactuallyachievedbestobjectivevaluewas j91 
���� ��! � �1 d Hlk6m6n9k � d Hpo�m�qro � ; its Euclideandistancefrom the target iss H n9m�trou�9S d%v $ , which is equalto thetheoreticalminimal dis-
tancewithin thegivencomputationalaccuracy.

3 Micr ochannelFlow Optimization

Both single- and multiobjective EAs have beenapplied to
a fluidic microchanneldesignproblem. Bio-analyticalap-
plications require long thin channelsfor DNA sequencing
by meansof electrophoresis. In order to pack a chan-
nel of several metersin length onto a small squareplate,
curved geometriesare required. However, curved channels
introducedispersionand thereforelimit the separationeffi-
ciency of the system. The questionis now how to shape
the contourof the channelin order to minimize dispersion.
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Figure1: Finalpopulationwithout targetting
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A detaileddescriptionof the problem as well as an opti-
mization solution using gradientmethodscan be found in
[Mohammadi,Molho & Santiago(2000)].

3.1 SingleObjectiveOptimization

The goal of this optimization run was to minimize the
final skewness of the flow inside the channel, i. e. it
was required, that the iso-values of the advected speciesy be normal to the flow field z by time { when they
exit the channel. The objective function defined by
[Mohammadi,Molho & Santiago(2000)] is therefore:| �~}%� 1i� y 147��:{u����z�147��:� $�� 7 (2)

with � being the crosssectionof the channelexit. The
shapeof the 90 degreesturn is describedby 11 parameters.
Therefore,the parametersearchspaceis of dimension11.
The objective spaceis scalarsince it is a single objective
problem.

Theobjectivefunctionis computedby solvingthegovern-
ing equationsof themotionof thespeciesin anelectricfields.
Both a (1+1)-ESanda 1 s � s �6� S�m � -CMA-ES wereappliedto
the problemand their convergencewascompared.The re-
sults were statisticallyaveragedfrom 5 runs with different
initial conditions,i.e. startingpoints.

SincetheCMA-EShasapopulationsizeof 12,it performs
12 function evaluationsper generation.Figure5 shows the
convergencenormalizedto thesamenumberof functioncalls.
Figures6 and7 show thecorrespondingsolutionsafter20and
180generationsof thebest1+1 run out of theensemble(the
linesareiso-potentiallinesof theelectricfield). After 20gen-
erationsthecontourof thechannelgetsa clearlyvisible dent
in it. After 80 evaluationsof theobjective function,thealgo-
rithm hasfound a double-bumpshapeto be even betterand
after 180 calls to the solver, no further significantimprove-
ment is observed. The value of the objective function has
droppedto about

S d vM�
for the bestrun out of the ensemble.
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Figure6: Solutionat generation20 usingES

Thismeansthatdispersionis almostzeroandthechannelhas
goodseparationproperties.

3.2 Multiobjecti veOptimization

Afterwards,the total deformationof the channelcontouris
introducedasa secondobjective to beminimizedsimultane-
ously in order to minimize manufacturingcosts. Thus, the
secondobjectivereads:� � Y �8� $��� �TS � H0HAH � S9S (3)

where � �
are the shapeparametersof the channelas in-

troducedby [Mohammadi,Molho & Santiago(2000)]. The
first objective remainsunchanged.The algorithm usedfor
this optimizationis a SPEAwith a populationsizeof 20, a
maximumsizeof theexternalnon-dominatedsetof 30,anda
matingpool of size10.

Figure8 shows thePareto-optimaltrade-off front after80
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Figure8: Pareto-frontof non-dominatedsolutionsafter80gen-
erationsusingES

generationsof the algorithmandfigures9 and10 show the
correspondingsolutions,i.e. optimizedshapesof the chan-
nel. One is now free to choosewhetherto go for minimal
skewnessat theexpenseof a higherdeformation(cf. Figure
9), choosesomeintermediateresultor minimizedeformation
in ordertominimizemanufacturingcostsandstill getthelow-
estskewnesspossiblewith thegivenamountof deformation
(cf. Figure10).

3.3 Comparisonwith Gradient basedMethods

Figures11 and 12 show two classesof optimized shapes
obtainedby [Mohammadi,Molho & Santiago(2000)] using
gradientmethods. It is interestingthat the gradient tech-
niqueoffers two differentdesigns,namelythe single-dented
(Fig. 11) and the double-dentedshapes(Fig. 12) which we
foundwith theevolution strategy also. Therefore,we obtain
qualitatively similar resultsfrom both methods. Using the
gradientmethod,theskew is reducedby oneorderof magni-
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tude[Mohammadi,Molho & Santiago(2000)] whichis com-
parableto the numbersobtainedby evolutionary optimiza-
tion. While trial anderrorprocedureswereusedin thegradi-
entmethodsto obtainvarioussolutions,ESprovidesuswith
a numberof solutionsanda Paretofront in a fully automated
fashion. Unlike the gradientbasedmethodswhich require
anexplicit formulationof theoptimizationproblemin hand,
the evolution strategy provided a straightforward optimiza-
tion procedure.Moreover, thesmallcostof thecomputations
impliesthatESarea reliablemethodleadingto greaterflexi-
bility andshorter“time-to-solution”.

Figure 11: First optimized shapeusing a gradient method
[Mohammadi,Molho & Santiago(2000)]

Figure 12: Secondoptimizedshapeusing a gradientmethod
[Mohammadi,Molho & Santiago(2000)]

4 Micr omixer Optimization

An evolution strategy with covariance matrix adaptation
(CMA-ES) is appliedto optimizea micromixer. This strat-
egy hasbeenfoundto preserve invariancepropertiesagainst
transformationsof optimizationparametersand to perform
better than other evolutionary algorithmsfor non-separable
and badly scaledfunctions [Hansen& Ostermeier(1997)].



Moreover, since we are dealing with a highly dynamical
systemthat introducesnoise to the objective function, we
take advantageof the recombinationfeaturein the proposed
method.

Theproposedmixer is actively controlledto enhancemix-
ing in astraightchannel.Flow in themainchannelis manipu-
latedby controllingtime-dependentflow from six secondary
channels. From thesesecondarychannels,time-dependent
cross-flow momentumis impartedon the mainchannelflow
which altersthe trajectoriesof flow-tracingparticles.A mi-
crographof the mixing chip is shown in Figure13 and the
flow configurationis illustratedin Figure14.

Figure13: Micrographof themixing chip

Figure14: Schematicof theflow configuration

As seenfrom Figure14, themainchannelis
m K in height

and
S s H k K in lengthwhereh is a varyinglengthscale.With a

distanceof
s K betweensecondarychannels,they are K�� m in

width and
k K in length. The inlet velocity z�14�+� of themain

channelz�14���:7 � d � � z IT� S ]T� �KV� $A� �Z� ���2� � K (4)

is parabolic,andtheinlet velocityof eachsecondarychannel
set

� � ������ � ; '*) 1 m������G��U��M� �8� � �TS 1 S � s (5)

is sinusoidalin time where
���

is theoscillationfrequency,
�M�

thephaseshift relative to thefirst setof secondarychannels,
and

�� �
thevelocityamplitude.

In orderto studythe performanceof the mixer, we com-
putethemixing rateof theflow by numericalsimulationsof
thegoverningNavier-StokesequationsataReynoldsnumber N¡ ��k

.
The aim of the optimization is to obtain the parameter

vector which leadsto the most pronouncedmixing rate in
the micromixer. Actuation parametersare the frequency,
the amplitude,and the phaseshift for eachpair of the sec-
ondarychannels,yielding a total numberof 9 actuationpa-
rameters. Within this work, we set amplitudesand phases
to constantvalues,namely

�� 5 � �� $ � ���¢ �£m z I �m
, and

� 5 � � ¢ � d
,

� $ � �
as recommendedin

[Volpert,Mezic,Meinhart& Dahleh(2000)]. As optimiza-
tion parametersremainthethreefrequencies

� 5 � � $ � � ¢ which
varywithin thelimits

c d � S0e , summarizedin theparametervec-
tor 3 � 1 �65 � � $�� � ¢ � .

Theobjective functionto beminimizedis themixing rate\ which is computedby\ � Y¥¤�¦[ 5 1G§61 � �:� $g ]©¨ Y¥¤�*[ 5 1ª§�1 � �=�g « $
(6)

where § is thescalarconcentrationand g thenumberof ver-
ticesin theoutletfor which theconcentrationis measured.

For the optimization, we evaluatethe mixing rate until
time

�¬�­S s k
in stepsof 0.05. After trying different sets

of frequencies,we decidedon averagingthemixing ratebe-
tweentime

�b�~W d
andtime

�V�®S s k
, a time regimein which

theflow reachessteadystatefor thetestedfrequencies.Time�C�TS s k
correspondsto 10flow throughtimes.TheCPUtime

for onesimulationof theflow until time
�V�¯S s k

takesabout
3 CPUhourson aSunSparcUltra-2processor.

Weimplementaderandomizedevolutionstrategy with co-
variancematrixadaptationandwith recombinationof all par-
ents. Thepopulationconsistsof � �©m

parentsand 	 �fS d
children.UsingMPI, theoptimizationis run in parallelon 5
processorsof a Sunworkstationcluster.

Theresultsof theoptimizationof thethreefrequenciesare
documentedin Table2.

Numberof actuatedfrequencies 3
Initial frequencies

� 5
0.25� $ 0.3333� ¢
0.5

Initial mixing rate \ 0.0345
Bestfrequencies

� 5
0.1388� $ 0.3165� ¢
0.4956

Bestmixing rate \ 0.0213
Numberof functionevaluations 460

Table2: Initial andoptimizedfrequencies

To obtain the requiredaccuracy of the parameters,the
functionhadto beevaluated460times.Dueto thehugecom-
putationalcost of the optimization,we could not afford to



run anotheroptimizationwith a differentdirect searchtech-
niqueandcompareit with theES.However, we comparethe
optimizationresultwith dynamicalsystemtheory. Theopti-
mum frequency for a mixer with only onesidechannelcan
be determinedanalyticallyby consideringthe movementof
a fluid particle in the main channelwhich yields a valueof�¯�°S � m (non-dimensionalunits). From studyinga mixer
with threesecondarychannels,onecanlearnthat thereis a
differenceif frequency ratiosare1, rational,or irrational.The
computationof themixing ratefor theparametervector 3 �1 S � m � S � m � S � m � with identicalfrequenciesyields \ � d H¦S�k�W9n
while our initial ”rational” frequency set 3 � 1 S � m � S � s � S � q �
gives us \ � d H d s qrk

. ”Irrational” frequenciesas pro-
posedin [Volpert,Mezic,Meinhart& Dahleh(2000)] 3 �1 S �+1 m2± k �L� S �%1 m9± m �L� S � m � yield \ � d H d m6t9k

which is the
bestmixing found theoretically. As one can see,the evo-
lutionary optimizationyields a much bettermixing rate of\ � d H d m%S s

with thefrequenciesreportedin Table2. Thisre-
sult meansa considerableimprovementcomparedwith num-
bersfrom a well-establishedtheory.

Figures15 and16 show a snapshotof theflow in themi-
cromixerattime

�²�Fqrk
for theidenticalandoptimalfrequen-

cies,respectively.
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Figure15: Flow actuatedby 3 � 1 S � m � S � m � S � m �
5 Conclusions

Single-andmultiobjectiveevolutionaryalgorithmshavebeen
implementedandassessed.TheSPEAhassuccessfullybeen
extendedto supporttargettingin objective space,an impor-
tantfeaturewhenfacedwith aproblemwheresomeproblem-
specificknowledgeis available. It hasbeenshown thatthese
algorithmsareeasyto applyto microdevicerelatedproblems.
For the microchannel,the solutionsarecomparableto those
found by gradientbasedmethodswhile remainingportable
andproviding a multitudeof efficient new designsin an au-
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Figure16: Flow actuatedby optimalfrequencies

tomatedfashion.For the micromixer, the evolution strategy
suggestsa solutionevenbetterthantheoreticalresults.
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