
1 INTRODUCTION 
 
Bayesian inference is used for quantifying uncer-
tainty and calibrating models of engineering systems 
based on measurements. It is also used for propagat-
ing the modeling uncertainties in simulations of the 
system behavior for updated robust predictions of 
system performance, reliability and safety (Pa-
padimitriou et al. 2001). The Bayesian tools consist 
of Laplace methods of asymptotic approximation 
and more accurate stochastic simulation algorithms 
such as Markov Chain Monte Carlo (MCMC) (Me-
tropolis et al. 1953), Transitional MCMC (Ching and 
Chen 2007) and Delayed Rejection Adaptive 
Metropolis (DRAM) (Haario et al. 2006).  

For large number of measurements, the Bayesian 
central limit theorem is used to approximate the pos-
terior distribution of the model parameters by a 
Gaussian distribution centered at the most probable 
value of the model parameters with covariance equal 
to the inverse of the Hessian of minus the logarithm 
of the posterior distribution evaluated at the most 
probable value. This approximation involves solving 
an optimization problem as well as computing the 
Hessian of a function that depends on the quantities 
of interest evaluated through model simulations. 
Gradient-based optimization algorithms can be used 
with first-order adjoint methods to efficiently com-
pute the most probable value. Second-order adjoint 

methods can then be used to compute the Hessian 
involved in the Gaussian distribution. An example of 
the application of first and second-order adjoint in 
structural dynamics can be found in the work by 
Ntotsios and Papadimitriou (2008). However, prob-
lems may arise when the gradient-based algorithms 
converge to local optima. Also, for some models of 
physical systems it is not possible to formulate an 
adjoint problem. In such cases stochastic methods, 
such as CMA (Hansen et al. 2003) can be used to es-
timate the global optima in the expense of more 
computational effort due to significantly more sys-
tem re-analyses required. Once the optimum has 
been determined, the Hessian can be obtained either 
numerically or by using efficient methods (e.g. Ly-
ness and Moler 1969).  

The asymptotic estimate in Bayesian inverse mod-
eling is approximate. Moreover, even for large num-
ber of data, it may fail to give a good representation 
of the posterior probability distribution in the case of 
multimodal distributions. In addition, the asymptotic 
approximation fails to provide acceptable estimates 
for un-identifiable cases manifested for relatively 
large number of model parameters in relation to the 
information contained in the data. 

For more accurate estimates, one should use sto-
chastic simulation algorithms (SSA) to generate 
samples that populate the posterior distribution and 
then evaluate robust prediction integrals using sam-
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ple estimates. Among the stochastic simulation algo-
rithms available, the transitional MCMC algorithm 
(Ching and Chen 2007) is one of the most promising 
algorithms for selecting the most probable model as 
well as finding and populating with samples the im-
portance region of interest of the posterior probabil-
ity distribution, even in the unidentifiable cases and 
multi-modal posterior distributions. In addition, the 
TMCMC method yields an estimate of the evidence 
of the model class based on the samples generated 
by the algorithm.  

SSA tools involve generating samples for tracing 
and then populating the important uncertainty region 
in the parameter space, as well as evaluating inte-
grals over high-dimensional spaces of the uncertain 
model parameters. They usually require a very large 
number of system re-analyses to be performed over 
the space of uncertain parameters. Consequently, the 
computational demands depend highly on the num-
ber of system analyses and the time required for per-
forming a system analysis.  For models involving 
hundreds of thousands or even million degrees of 
freedom and localized nonlinear actions activated 
during system operation, the computational demands 
may be excessive. The present work proposes meth-
ods for drastically reducing the computational de-
mands at the system, algorithm and hardware levels 
involved in the implementation of Bayesian tools.  

Surrogate models and high performance comput-
ing techniques are integrated (Angelikopoulos et al. 
2012) in Bayesian inverse techniques to efficiently 
handle the excessive computational cost associated 
with large number of re-analyses of large-order, in-
dustrial size, computational models of hundreds of 
thousands or millions degrees of freedom encoun-
tered in practical applications. Parallel computing 
algorithms can be used to efficiently distribute the 
computations in available multi-core CPUs in clus-
ters with heterogeneous architectures.  

Application of the proposed computational 
framework to model calibration and robust response 
updating in structural dynamics is emphasized. Effi-
cient fast and accurate component mode synthesis 
(CMS) techniques, consistent with the finite element 
(FE) model parameterization, are also implemented 
to achieve drastic reductions in the system order, re-
sulting in additional substantial computational sav-
ings (Papadimitriou and Papadioti 2013). Large-
order linear computational models taken from civil 
engineering applications demonstrate that remark-
able reductions in computational effort can be 
achieved, allowing the excessive computations in 
Bayesian inverse techniques for large-order compu-
tational models to be reduced to manageable levels.  

2 BAYESIAN INVERSE MODELING 

2.1 Parameter estimation 

Consider a parameterized model class Μm  of an ac-
tual engineering system used to predict various out-
put quantities of interest ( | )m mg q Μ  of the system, 
where mN

m Rq Î  is a set of parameters in this model 
class that need to be estimated using experimental 
data ˆ{ , 1, , }r dD y r Nº = .  

Following a Bayesian formulation (Beck and 
Katafygiotis 1998, Beck 2010, Yuen 2010) and as-
suming that the observation data and the model pre-
dictions satisfy the prediction error equation  

ˆ ( | )m my g eq= +Μ  (1) 

where the error term ~ (0, )e N S  is a zero-mean 
Gaussian vector with covariance ( )eqS=S   de-
pending on the parameters eq  of the prediction error 
model class eΜ , the updated distribution 

( | , )p Dq Μ  of the augmented parameter set 
( , )m eq q q= , given the data D  and the combined 

model class m eΜ= {Μ ,Μ } , results from the applica-
tion of the Bayes theorem as follows  

( | , ) ( | , ) ( | ) / ( | )p D p D p Dq q p q=Μ Μ Μ Μ  (2) 
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is the likelihood of observing the data from the 
model class,  

1ˆ ˆ( ; ) [ ( | )] ( )[ ( | )]T
m e mJ y g y gq q q q-= - S -Μ Μ Μ  (4) 

is the measure of fit between the experimental and 
model predicted properties, ( | )p q Μ  is the prior 
probability distribution of the model parameters 
based on previous knowledge and/or user experi-
ence, and ( | )p D Μ  is the evidence of the model 
class. 

2.2 Robust predictions 

Let q  be an output quantity of interest for the sys-
tem. Posterior robust predictions of q  are obtained 
by taking into account the updated uncertainties in 
the model parameters given the measurements D . 
Let ( | , )p q q Μ  be the conditional probability distri-
bution of q  given the values of the parameters. Us-
ing the total probability theorem, the posterior robust 
probability distribution ( | , )p q D Μ  of q , taking into 
account the model Μ  and the data D , is given by 
(Papadimitriou et al. 2001) 

( | , ) ( | , ) ( | , ) p q D p q p D dq q q= òΜ Μ Μ  (5) 

as an average of the conditional probability distribu-
tion ( | , )p q q Μ  weighting by the posterior probabil-



ity distribution ( | , )p Dq Μ  of the model parameters. 
Let ( )G q  be a function of the output quantity of in-
terest q . A posterior robust performance measure of 
the system given the data D  is  

[ ( ) | , )] ( ) ( | , ) E G q D G q p D dq q= òΜ Μ  (6) 

Stochastic simulation methods can be conven-
iently used to estimate the integral from the samples 

( )iq , 1, ,i N=  , generated from the posterior prob-
ability distribution ( | , )p Dq Μ  in (2). In this case, 
the integrals (5) and (6)  can be approximated by  
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respectively.  

3 STOCHASTIC SIMULATION ALGORITHMS 

Markov Chain Monte Carlo (MCMC) algorithms are 
used to efficiently draw samples from the posterior 
distribution. MCMC variants such as Differential 
Evolution MC (Braak et al. 2006) or Differential 
Evolution Random Subsampling MC (DREAM) 
(Braak et al. 2008) were introduced to improve par-
allel efficiency. These methods consist of a popula-
tion of chains that interact by exchanging informa-
tion but at the same time preserve the MCMC 
convergence characteristics at the individual chain 
level. Another MCMC method which can be catego-
rized in the framework of Evolutionary Strategy 
MCMC methods (Drugan and Thierens 2010) is the 
TMCMC (Ching and Chen 2007). This method is a 
generalization of the method proposed by Au and 
Beck (2002) extended by notions inherent to simu-
lated annealing algorithms.  

The TMCMC method has been proposed to ad-
dress the problem of choosing the right adaptive pro-
posal PDF in MCMC methods for accelerating con-
vergence to the posterior PDF. This can be a serious 
problem when the support of the posterior PDF in 
the parameter space has complex geometry, and/or 
when the posterior PDF is very peaked and isolated 
in a small region in the parameter space. Due to a 
large number of independent parallel chains in-
volved, TMCMC is more efficient in terms of paral-
lel efficiency compared to the DRAM and DREAM 
algorithms. DRAM is essentially serial and DREAM 
based on Differential Evolution suggests the use of a 
few independent parallel chains (Braak et al. 2008) 
proportional to the parameter space dimensionality. 
TMCMC also applies to multimodal posterior PDFs 
as it handles efficiently very peaked or very flat 
PDFs along certain directions in the parameter 

space, as well as it estimates the evidence ( | )p D Μ  
which can further be used for model selection. 

4 SURROGATE MODELS BASED ON KRIGING 

The most time consuming part of the TMCMC algo-
rithm is the repeated evaluation of the likelihood 
function, requiring a large number of full model re-
analyses. Surrogate models are used to reduce the 
computational time at the level of the TMCMC algo-
rithm.  The objective is to avoid the expensive full 
model simulation runs at a new sampling point in the 
parameters space by exploiting the function evalua-
tions from previous full model runs that are available 
at the neighbour (design) points in order to generate 
an approximate estimate. 

Surrogate models are especially well-suited for 
use with the TMCMC algorithm since at each inter-
mediate stage in the TMCMC algorithm, a large 
number of samples that sufficiently cover the sup-
ports of the intermediate posterior PDFs from the 
current and previous stages are available to be used 
as design points for approximating the likelihood es-
timate at a new sample based on a surrogate tech-
nique. An adaptive surrogate technique can thus be 
used to exploit the information from available 
neighbour samples for providing an approximate es-
timate at a new sample. 

4.1 Kriging interpolation 

The kriging technique Lophaven et al. (2002) is used 
to approximate the function evaluation at a sampling 
point using the function evaluations at neighbour 
points in the parameter space. Consider m  de-
sign/sample points 1[ , , ]m   in the parameter space 
and let 1[ ( ), , ( )]T

mY J J    be the available values 
of a response function ( )J   at these points. Using 
the kriging method, a function ( )J   is approximated 
at a point   in the parameter space in the form  

( ) ( ) ( )TJ f       (9) 

where ( )Tf    is the mean response, 
1( ) [ ( ), , ( )]T

mf f f     are user selected basis 
functions, usually in polynomial form, 

1[ , , ]T
m     are regression coefficients to be es-

timated from the generalized least square method, 
and ( )   is a zero mean stochastic process with co-
variance 2[ ( ) ( )] ( ; , )i j i jE R         which de-
pends on the variance  2  and a set of parameters   
appearing in the structure of the correlation function 

( ; , )i jR     of the stochastic process ( )  . A com-
mon choice of the correlation function is the expo-
nential form: 
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with 0j  , 1, ,j m  , and 10 2m   . The op-
timal choice of the parameters  , 2  and   are the 
ones that maximize the likelihood function given the 
values at the design points. This likelihood function 
is given in the form  
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The optimal values of   and 2  are given by  

1 1 1ˆ ( )T TF R F F R Y     (12) 
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while the optimal values ̂  of   are obtained by 
minimizing the minus the log-likelihood function 
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The prediction at the point   in the model parameter 
space and its mean square error are given respectively 
by [28, 29]  

1ˆ ˆˆ( ) ( ) ( )T TJ f r R Y F       (15) 

and  

2 2 1 1 1ˆ ˆˆ( ) [1 ( ) ]T T Ts r R r u F R F u        (16) 

where ˆ ˆ( )R R  , 1 ( )Tu F R r f   , F  is a matrix 
with components ( )ij j iF f  , R  is the matrix with 
components ( ; , )ij i jR R    .  

The estimation of the kriging parameters ̂  in-
volve solving a potentially high dimensionality 
minimization problem, occurring due to the choice 
of anisotropic correlation lengths assignment. Fol-
lowing the analysis of Lophaven et al. (2002), the 
kriging prediction can quickly deteriorate if the 
minimization is not accurate. A bounded pattern-
search method is used in this work. Statistically, the 
root mean squared error (RMSE) or the standard de-
viation ( )s   represents the predicted deviation of 
the kriging metamodel from the actual response. 
This standard deviation ( )s   will be used in the pa-
per to accept or reject a surrogate prediction.  

4.2 Adaptive kriging and TMCMC 

In general, the accuracy of the surrogate estimates 
based on a number of support points depend on the 
smoothness of the function to be evaluated on the 

region in the parameter space that is covered by the 
support points. The smaller the size of this region, 
the higher the expected accuracy from the surrogate 
estimates. It is thus expected that higher accuracy of 
the surrogate estimate at a point in the parameter 
space will be achieved by using support points at the 
neighbor of the surrogate point instead of global 
support points that cover the whole region or signifi-
cant parts of the region/domain in the parameter 
space.  

A feature of the TMCMC algorithm is that the 
MC samples generated from the multiple chains 
cover the whole support of the posterior distribution 
of the TMCMC stage j . As a result, a new MC 
sample point in the parameter space generated from 
the TMCMC algorithm is close to neighbor points 
that could be used as support points to generate a 
surrogate estimate of the function instead of an ex-
pensive real estimate. Each new MC point is then 
associated with a different set of neighbor points, 
depending of its location in the parameter space. 
This surrogate estimate based on different support 
points located at the neighbor of the current surro-
gate point is an adaptive surrogate procedure.  

To maintain the accuracy of the TMCMC algo-
rithm, the error ( )s   of the function evaluation due 
to surrogate estimate has to be kept relatively small. 
If this is not possible, it is then more suitable to use a 
full function evaluation at the surrogate point.  

In order to ensure a high quality approximation, a 
surrogate estimate at stage j  is performed and ac-
cepted if it simultaneously obeys the following heu-
ristic rules: 
1. The design points used for interpolation corre-

spond to real full system simulations and not 
other surrogate estimates.  

2. The surrogate point belongs to the convex hull of 
the design points so that an interpolation is per-
formed, while extrapolations are prohibited.  

3. The surrogate estimate is based on a user-defined 
minimum number of design points, which are in 
the neighbor of the surrogate point. The mini-
mum number of design points depends on the di-
mension of the uncertain parameter space and 
the order of the kriging interpolation. To avoid 
overfitting and discontinuities that arise from the 
fact that the surrogate estimates at two neighbour 
points might be based on two different sets of 
design points, the number of design points is se-
lected to be larger than the minimum number of 
points required to perform the surrogate esti-
mate.  

4. The neighbour design points are selected as the 
ones closest to the surrogate estimate and also 
within the hyper-ellipse of the TMCMC proposal 
covariance matrix scaled to include the minimum 
number of design points. 



5. The kriging approximation maintains its locality, 
by choosing the design points as such belonging 
to a hyper-surface defined by the scaled proposal 
covariance matrix. The scaling factor scales the 
neighborhood around the surrogate point up to a 
predefined scaling number. A surrogate estimate 
is not allowed if the scaling factor exceeds a pre-
specified number so that only local estimates are 
accepted. 

6. The surrogate estimate is checked whether its 
predicted value is within a 95% quintile of all the 
design point likelihood values accounted so far. 
The purpose of the threshold is to discourage 
overshooting surrogate estimates to get the high-
est possible plausibility weights, as this will lead 
during the next stage following the re-sampling 
step in the generation of a long chain with artifi-
cially induced large rejection rates, quickly de-
caying sampling quality and potentially com-
pletely destroying the sampling procedure.  

7. The surrogate estimate is accepted if the predic-
tion error ( )s  , given in (16) by the kriging 
method, is smaller than a user specified value. 
The effect of this value on the accuracy will be 
demonstrated in the numerical examples.  

At this point it is very important to note the dif-
ferent possibilities one has in order to do the interpo-
lation. One can interpolate at either the higher meas-
ure of fit level or at the lower model simulation 
level. At the measure of fit level, the interpolations 
are performed for the measure of fit function 

( ; )J q Μ  in (4) or even the likelihood function level 
in (3). At the model simulation level, the interpola-
tions are performed for the functions ( | )m mg q Μ , 
which may include various output quantities of in-
terest.  

5 TMCMC PARALLEL IMPLEMENTATION 

The TMCMC algorithm is very-well suited for par-
allel implementation in a computer cluster. Details 
of the parallel implementation are given in Ange-
likopoulos et al. (2012). Specifically, a parallel im-
plementation algorithm is activated at every stage of 
the TMCMC algorithm exploiting the large number 
of short, variable length, chains that need to be gen-
erated starting from the leader samples determined 
from the TMCMC algorithm at the particular stage. 
Static and dynamic scheduling schemes can be con-
veniently used to optimally distribute these chains in 
a multi-host configuration of complete heterogene-
ous computer workers.  The static scheduling 
scheme distributes the chains in the workers using a 
weighted round-robin algorithm so that the number 
of likelihood evaluations is arranged to be the same 
for each computer worker.  

The static scheduling scheme is computational ef-
ficient when the computational time for a likelihood 
evaluation is the same independently of the location 
of sample in the parameter space as well as when 
surrogate estimates are not activated. The dynamic 
scheduling scheme is more general, ensuring a more 
efficient balancing of the loads per computer worker 
in the case of variable run time of likelihood func-
tion evaluations and unknown number of surrogates 
activated during estimation. Specifically, each 
worker is periodically interrogated at regular time 
intervals by the master computer about its availabil-
ity and samples from TMCMC chains are submitted 
to the workers on a first come first serve basis to 
perform the likelihood function evaluations so that 
the idle time of the multiple workers is minimized. 

6 APPLICATION IN STRUCTURAL 
DYNAMICS 

The computational efficiency and accuracy of the 
proposed method is demonstrated by applying it to a 
structural dynamics problem. Specifically, the meth-
od is used to update the uncertainties in the parame-
ters of the FE model of the Metsovo bridge based on 
simulated modal data.  
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Components of FE model of bridge. 

 

6.1 Description of structure and model 

A description of the bridge can be found in Pa-
padimitriou and Papadioti (2013). A detailed FE 
model of the bridge is created using 3-dimensional 
tetrahedron quadratic Lagrange FEs and is shown in 
Figure 1. An extra coarse mesh is chosen to predict 
the lowest 20 modal frequencies and mode shapes of 
the bridge. The size of the elements in the extra 
coarse mesh is the maximum possible one that can 
be considered, with typical element length of the or-
der of the thickness of the deck cross-section. This 
model has 97,636 FEs and 562,101 DOFs.  



6.2 FE model reduction using CMS 

The CMS method for model updating presented in 
the work by Papadimitriou and Papadioti (2013) is 
used to significantly reduce the size of the FE model 
such that the predictions of the required lowest 20 
modes are accurate. CMS techniques (Craig and 
Bampton 1965) divide the structure into components 
with mass and stiffness matrices that are reduced, 
using fixed-interface and constrained modes, to alle-
viate part of the computational effort. However, di-
rect application of CMS technique at each TMCMC 
sampling point requires the re-computation of the 
eigen-problem and the interface constrained modes 
for each component. This is a very time consuming 
operation and computationally more expensive that 
solving directly the original matrices for the eigen-
values and the eigenvectors. For certain parameteri-
zation schemes for which the mass and stiffness ma-
trices of a component depend linearly on only one of 
the free model parameters to be updated, the full re-
analyses of the component eigen-problems are 
avoided. The eigenproperties and the interface con-
strained modes can be computed as a function of the 
model parameters directly from the eigenproperties 
and the interface constrained modes that correspond 
to a nominal value of the model parameters. Details 
of the formulation are presented in (Papadimitriou 
and Papadioti 2013). The end result is that the re-
duced mass and stiffness matrices of the structure for 
each re-analyses are obtained from the reduced 
component mass and stiffness matrices obtained for 
a nominal structure. This is an important result 
which saves substantial computational effort since it 
avoids (a) re-computing the fixed-interface and con-
strained modes for each component, and (b) assem-
bling the reduced matrices from these components. 
The formulation guarantees that the reduced system 
is based on the exact component modes for all val-
ues of the model parameters. 

 

6.3 Application and numerical results 

Let cw  be the highest modal frequency that is of in-
terest in FE model updating. In this study the cut-off 
frequency is selected to be the 20th modal frequency 
( cw =4.55 Hz) of the nominal FE model. Following 
CMS technique, the bridge is divided into nine com-
ponents as shown in Figure 1. This division intro-
duces 8 interfaces as shown in the same figure. The 
modes selected to be kept for each component have 
frequency max cw rw= , where the r  values affect the 
computational efficiency and accuracy of the CMS 
technique. The r  value is chosen to be 8r= , re-
sulting in a substantial reduction of model DOF by 
more than two orders of magnitude. Specifically, the 
total number of DOF is 3,586 (286 internal modes 
and 3,300 interface DOFs) for all components. The 
highest error in the estimation of the lowest twenty 

modal frequencies is less than 0.01%. A further re-
duction in the number of generalized coordinates is 
achieved by retaining only a fraction of the con-
strained interface modes with frequency less than 

max cw nw= . Using 200n = , an order of magnitude 
reduction in the interface DOFs is obtained with the 
kept modes to be 592 and the errors in the estimates 
for the lowest 20 modal frequencies to be less than 
0.02%. It this thus evident that using CMS a drastic 
reduction in the number of generalized coordinates, 
without sacrificing in accuracy, is obtained which 
can exceed three orders of magnitude in this case.  

The computational time needed to estimate the 
lowest 20 modal properties using CMS with 8r=  
and 200n =  is two orders of magnitude less than 
the time required to solve the complete FE model. It 
is thus obvious that CMS is expected to drastically 
reduce the computational effort in Bayesian inverse 
modeling without sacrificing in accuracy. 

The FE model is parameterized using five pa-
rameters associated with the modulus of elasticity of 
one or more structural components shown in Figure 
1. Specifically, the first two parameters 1  and 2  
account respectively for the modulus of elasticity of 
the pier components 3 and 7 of the bridge. The pa-
rameter 3  accounts for the modulus of elasticity of 
the components 1 and 2 of the deck, the parameter 

4  accounts for the components 4 and 5, while the 
parameter 5  accounts for the components 6 and 8. 
The component 9 is not parameterized. The model 
parameters are introduced to scale the nominal val-
ues of the properties that they model so that the 
value of the parameters equal to one corresponds to 
the nominal value of the FE model. 

The estimation of the parameter values and their 
uncertainties of the FE model is based on modal fre-
quencies and mode shapes. Simulated, noise con-
taminated, measured modal frequencies and mode 
shapes are generated by adding a 1% and 3% Gaus-
sian noise to the modal frequencies and modeshape 
components, predicted by the nominal non-reduced 
FE models. 38 sensors are placed on the bridge to 
monitor vertical and transverse accelerations. The 
measured data contain the values of the ten lowest 
modal frequencies and modeshapes. Details of the 
likelihood function used and the form of the objec-
tive function (4) are given in Christodoulou and Pa-
padimitriou (2007).  

The model updating is performed using the sto-
chastic simulation algorithm TMCMC with 1000 
samples per TMCMC stage (Ching and Chen 2007). 
The number of FE model runs depends on the num-
ber of TMCMC stages which was estimated to be 
19. The resulting number of FE model re-analyses 
are 19,000. The parallelization features of TMCMC 
(Angelikopoulos et al. 2012) were also exploited, 
taking advantage of the available four-core multi-



threaded computer unit to simultaneously run eight 
TMCMC samples in parallel. For comparison pur-
poses, the computational effort for solving the ei-
genvalue problem of the original unreduced FE 
model is approximately 139 seconds. Multiplying 
this by the number of 19,000 TMCMC samples and 
considering parallel implementation in a four-core 
multi-threaded computer unit, the total computa-
tional effort for the model class is expected to be of 
the order 7 days. In contrast, for the reduced-order 
model for 8r=  and 200n = , the computational 
demands for running the model class are reduced to 
approximately 14 minutes. It is thus evident that a 
drastic reduction in computational effort for per-
forming the structural identification based on a set of 
monitoring data is achieved from approximately 7 
days for the unreduced model class to 14 minutes for 
the reduced model class, without compromising the 
predictive capabilities of the proposed parameter es-
timation methodology. This results in a factor of 
over 700 reduction in computational effort.  

The effectiveness of the surrogate estimates for 
use with TMCMC algorithm is next demonstrated. 
The surrogate estimate is performed at the measure 
of fit level. The surrogate estimates are based on a 
second-order kriging approximation.  In order to 
quantify the accuracy of the surrogate estimates, we 
introduce the following measure  in the parameter 
space. Let iq  be a vector with components ,j iq  that 
measure the moment of the marginal distributions of 
the j -th model parameter in the set  , where the 
subscript i  refers to the i -th surrogate-based 
TMCMC run (s-TMCMC). Herein, the terms q  
represents the mean   or the standard deviation   
of the marginal distributions of a model parameter 
 . Due to the stochastic nature of the TMCMC al-
gorithm, a sufficiently large number of s-TMCMC 
runs need to be performed to get a statistical mean-
ingful estimate for the moment q  computed from 
the s-TMCMC algorithm.  

The confidence intervals of the estimated means 
and standard deviations of the marginal distributions 
of the model parameters using the s-TMCMC for 
various values of the errors ( )s   allowed for the 
kriging estimates are shown in Figure 2 and 3, re-
spectively, and compared to the confidence intervals 
for the same quantities estimated using the TMCMC 
without surrogates. The results in this figure are 
computed for 50 TMCMC or 50 s-TMCMC inde-
pendent runs. It is seen that the results provided by 
the surrogate-based s-TMCMC estimates match very 
well those given by the regular TMCMC estimates 
for even high values of the errors ( )s   allowed for 
the kriging approximation.   

For large fractional errors of 10% and 50% corre-
sponding to values in the figures of ( )s  =0.1 and 

0.5, respectively, the computational effort is deduced 
by 80 and 95%. This is approximately one order of 
magnitude reduction that can achieved by the 
integration of the surrogate estimates in TMCMC 
algorithm.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 Comparison of the confidence intervals for the mean 
values as estimated from the TMCMC and s-TMCMC algo-
rithms for errors 0.01, 0.1 and 0.5. 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 3. Comparison of the confidence intervals for the stan-
dard deviation values as estimated from the TMCMC and s-
TMCMC algorithms for errors 0.01, 0.1 and 0.5. 
 

Overall, using the model reduction, the surrogate 
approximations and parallel implementation in a 4-
core multi-threaded computer, the 562,101 DOF fi-
nite element model, requiring 19,000 model runs, 
can be performed, depending on the allowed error in 
the surrogate estimate, in 1 to 3 minutes instead of 7 
days, which constitutes a remarkable reduction of 
three to four orders of magnitude in computational 
effort. 



7 CONCLUSIONS 

Stochastic simulation algorithms, such as the 
TMCMC algorithm, used in Bayesian inverse mod-
eling require a large number of FE model simulation 
runs. For large order computational models with 
hundred of thousands or even million DOFs, the 
computational demands involved in the TMCMC 
sampling algorithm may be excessive. Drastic reduc-
tions can be achieved using surrogate models and 
parallel implementation of the TMCMC algorithm. 
Surrogate models are well adapted to the TMCMC 
algorithm for significantly reducing the number of 
full model runs required. An adaptive kriging tech-
nique is effectively integrated within the parallel 
multiple chain TMCMC algorithm, resulting in sub-
stantial reduction of the number of full system re-
analyses, essentially speeding-up computations by 
more than an order of magnitude. The proposed 
kriging technique exploits the availability of large 
number of multi-chain MCMC samples in the local 
neighbor of a surrogate estimate. Parallel computing 
algorithms are also very well suited to be used with 
TMCMC algorithm to efficiently distribute the com-
putations in available multi-core CPUs.  

Application of the framework to Bayesian inverse 
modeling in structural dynamics using vibration 
measurements was emphasized in this work. Recent 
developments in CMS techniques for parameter es-
timation, exploiting certain parameterization 
schemes often encountered in FE model updating, 
were shown to be effective in drastically reducing 
the order of the structural models and thus the com-
putational effort required at the system level. Appli-
cation of the framework on the model updating of a 
bridge demonstrated a remarkable reduction in com-
putational time as high as four orders of magnitude.  
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