Fast Curvature Matrix-Vector Products

Nicol N. Schraudolph

Institute of Computational Sciences, Eidgendssische
Technische Hochschule, CH-8092 Ziirich, Switzerland
nic@inf.ethz.ch

Abstract. The Gauss-Newton approximation of the Hessian guarantees
positive semi-definiteness while retaining more second-order information
than the Fisher information. We extend it from nonlinear least squares to
all differentiable objectives such that positive semi-definiteness is main-
tained for the standard loss functions in neural network regression and
classification. We give efficient algorithms for computing the product
of extended Gauss-Newton and Fisher information matrices with arbi-
trary vectors, using techniques similar to but even cheaper than the fast
Hessian-vector product [1]. The stability of SMD [2-5], a learning rate
adaptation method that uses curvature matrix-vector products, improves
when the extended Gauss-Newton matrix is substituted for the Hessian.

1 Definitions and Notation

Network. A neural network with m inputs, n weights, and o linear outputs
is usually regarded as a mapping R™ — R° from an input pattern x to the
corresponding output vy, for a given vector w of weights. Here we formalize such
a network instead as a mapping N : R™ — R° from weights to outputs (for
given inputs), and write y = N (w). To extend this formalism to networks with
nonlinear outputs, we define the output nonlinearity M : R° — R° and write
z = M(y) = M(N(w)). For networks with linear outputs, M is the identity.

Loss function. We consider neural network learning as the minimization of a
scalar loss function £ : R — R defined as the log-likelihood £(z) = —logPr(z)
of the network output 2z under a suitable statistical model [6]. For supervised
learning, £ may also implicitly depend on given targets z* for the network
outputs. Formally, the loss can now be regarded as a function £L(M (N (w))) of
the weights, for a given set of inputs and (if supervised) targets.

Jacobian. The Jacobian Jr of a function F : R™ — R™ is the nxm matrix of
partial derivatives of the outputs of F with respect to its inputs. For a neural
network defined as above, the gradient of the loss with respect to the weights is
given by

6 ! ! ! !
8_w['(M(N(w))) = Jeomon = InImIz (1)

where o denotes function composition, and ’ the matrix transpose. We use J as
an abbreviation for Jzoaon -

Matching loss functions. We say that the loss function £ matches the output
nonlinearity M iff J, \, = Az + b, for some A and b not dependent on w.
The standard loss functions used in neural network regression and classification
— sum-squared error for linear outputs, and cross-entropy error for softmax or
logistic outputs — are all matching loss functions with A =1 and b = —z* so
that Jp,\ = 2 — 2*[6, chapter 6]. This will simplify some of the calculations
described in Section 3 below.

Hessian. The instantaneous Hessian Hz of a scalar function F : R™ — R is the
n xn matrix of second derivatives of F(w) with respect to its inputs w:

_ 0JF
Hy = EAELE (HF)ij

2
_ 0*F(w) ‘ @)
811)1' 6’11)]'
For a neural network as deﬁged above, we abbreviate H = H o pon - The Hessian
proper, which we denote H, is obtained by taking the expectation of H over
inputs: H = (H),,. For matching loss functions, Hzop = A = Jj A"

Fisher information. The instantaneous Fisher information matrix Fr of a
scalar log-likelihood function F : R® — R is the n xn matrix formed by the
outer product of its first derivatives:

OF (w) 0F (w)

Fr = Jplr, e, (Frly = —5-= =5
1 J

3)

Note that Fr always has rank one. As before, we abbreviate F' = Froaon- The
Fisher information matrix proper, F' = (F')_, describes the geometric structure
of weight space [7] and is used in the natural gradient descent approach [8].

2 Extended Gauss-Newton Approximation

Problems with the Hessian. The use of the Hessian in second-order gradient
descent for neural networks is problematic: for nonlinear systems, H is not nec-
essarily positive definite, so Newton’s method may diverge, or even take steps in
uphill directions. Practical second-order gradient methods should therefore use
approximations or modifications of the Hessian that are known to be reasonably
well-behaved, with positive semi-definiteness as a minimum requirement,.

Fisher information. One alternative that has been proposed is the Fisher
information matrix F [8], which — being a quadratic form — is positive semi-
definite by definition. On the other hand, F ignores all second-order interactions,
thus throwing away a lot of potentially useful information. By contrast, we shall
derive an approximation of the Hessian that is positive semi-definite even though
it does retain certain second-order terms.

Gauss-Newton. An entire class of popular optimization techniques for nonlin-
ear least squares problems — as implemented by neural networks with linear

outputs and sum-squared loss function — is based on the well-known Gauss-
Newton (aka “linearized”, “outer product”, or “squared Jacobian”) approxi-
mation of the Hessian. Here we extend the Gauss-Newton approach to other
standard loss functions — in particular, the cross-entropy loss used in neural
network classification — in such a way that even though some second-order in-
formation is retained, positive semi-definiteness can still be proven. Using the
product rule, the instantaneous Hessian of our neural network can be written as

P 0
H = w(JLOM JN) = le\/ HLoM JN + Z(J[,OM)i H.N’z) (4)
i=1

where i ranges over the o outputs of N (the network proper), with A; denoting
the subnetwork that produces the ith output. Ignoring the second term above,
we define the extended, instantaneous Gauss-Newton matrix

GEJJIVH[,O/\AJN. (5)

Note that G has rank < o (the number of network outputs), and is positive
semi-definite, regardless of the choice of network A, provided that H o, is.

G models the second-order interactions among the network outputs (via
Hopnm) while ignoring those arising within the network itself (Hyy,). This consti-
tutes a compromise between the Hessian (which models all second-order inter-
actions) and the Fisher information (which ignores them all). For systems with
a single, linear output and sum-squared error, G reduces to F’; in all other cases
it provides a richer source of curvature information.

Standard loss functions. For the standard loss functions used in neural net-
work regression and classification, G has additional interesting properties:

Firstly, the residual J;. ,, = z — 2* vanishes at the optimum for realizable
problems, so that the Gauss-Newton approximation (5) of the Hessian (4) be-
comes exact in this case. For unrealizable problems, the residuals at the optimum
have zero mean; this will tend to make the last term in (4) vanish in expectation,
so that we can still assume G ~ H near the optimum.

Secondly, in each case we can show that Hzon¢ (and hence G, and hence G)
is positive semi-definite: for linear outputs with sum-squared loss — i.e., con-
ventional Gauss-Newton — Hpopg = Jaq is just the identity I; for independent
logistic outputs with cross-entropy loss it is diag[z (1 — 2z)], positive semi-definite
because (Vi) 0 < z; < 1. For softmax output with cross-entropy loss we have
Hponm = diag(z) — zz ', which is also positive semi-definite since (Vi) z; > 0 and
> ;% =1, and thus

(Vv € R?) v'[diag(z) — zz']v = Zzivf - (Z 2;v;)?
=Y zw? — 200 zw) (O zvy) + O 2v5)°
i i J J
= Zzi(vi —szvj)2 > 0. (6)

K3

3 Fast Curvature Matrix-Vector Products

3.1 The Passes

We now describe algorithms that compute the product of F', G, or H with an
arbitrary n-dimensional vector v in O(n). They are all constructed from the same
set of passes in which certain quantities are propagated through the network in
either forward or reverse direction. For implementation purposes it should be
noted that automatic differentiation software tools' can automatically produce
these passes from a program implementing the basic forward pass fo.

fO' This is the ordinary forward pass of a neural network, evaluating the function
F(w) it implements by propagating activity forward through F.

71. The ordinary backward pass of a neural network, calculating Ju by prop-
agating u backwards through F. Uses intermediate results from the fy pass.

f1. Following Pearlmutter [1], we define the Gateauz derivative

Ro(F(w)) = —————= = Jrv (7

=0

which describes the effect on a function F(w) of a weight perturbation in the
direction of v. By pushing R, — which obeys the usual rules for differential
operators — down into the equations of the forward pass fy, one obtains an
efficient procedure which calculates Jrv from v; see [1] for details and examples.
This f; pass uses intermediate results from the fo pass.

T9. When the R, operator is applied to the r; pass for a scalar function F,
one obtains an efficient procedure for calculating the Hessian-vector product
Hrv = Ry(J%). Again, see [1] for details and examples. This ry pass uses
intermediate results from the fy, f1, and r; passes.

3.2 The Algorithms

The first step in all three matrix-vector products is the computation of the
gradient J' of our neural network model by standard backpropagation:

Gradient. J' is computed by an fo pass through the entire network (N, M,
and £), followed by an r; pass propagating u = 1 back through the entire
network (£, M, then N). For matching loss functions there is a shortcut: since
Jropm = Az + b, we can limit the forward pass to N and M (to compute z),
then r1-propagate u = Az + b back through just V.

Fisher information. To compute Fv = J'Jv, simply multiply the gradient .J/
by the inner product between .J' and . If there is no random access to J' or v
— i.e., its elements can be accessed only through passes like the above — the

! See http://www-unix.mcs.anl.gov/autodiff/

scalar Jv can instead be calculated by fi-propagating v forward through the
network. This step is also necessary for the other two matrix-vector products.

Hessian. After fi-propagating v forward, ro-propagate R, (1) =0 back through
the entire network to obtain Hv = R, (J') [1]. For matching loss functions, the
shortcut is to fi-propagate v through just AV and M to obtain R,(z), then
ro-propagate Ry (J;, 1) = ARy (2z) back through N.

Gauss-Newton. Following the f; pass, ro-propagate R, (1) = 0 back through £
and M to obtain Ry (Jzopq) = Hrom v, then ri-propagate that back through
N, giving Gv. For matching loss functions we do not require an 7, pass: since

G = JyHeomIn = JyJyA Iy, (8)

we can limit the f; pass to NV, multiply the result with A’, then r;-propagate it
back through M and N. Alternatively, one may compute the equivalent Gv =
JyAJpm Iy by continuing the fi pass through M, multiplying with A, and
r1-propagating back through N.

Batch average. To calculate the product of a curvature matrix C = (C),
— where C' is one of F', G, or H — with vector v, average the instantaneous
product Cv over all input patterns & (and associated targets z * if applicable)
while holding v constant. For large training sets, or non-stationary streams of
data, it is often preferable to estimate Cv by averaging over “mini-batches” of

(typically) just 5-50 patterns.

3.3 Computational Cost

Table 1 summarizes the curvature matrix C' corresponding to various gradient
methods, the passes needed (for a matching loss function) to calculate both the
gradient J' = (J')_ and the fast matrix-vector product Cv, and the associated
computational cost in terms of floating-point operations (flops) per weight and
pattern in a multi-layer perceptron. These figures ignore certain optimizations
— e.g., not propagating gradients back to the inputs — and assume that any
computation at the network’s nodes is dwarfed by that required for the weights.

Pass fo . fi 7o Cost

Method result: | £ J'u Jv Hwv |(for J'

C = name cost:| 2 3 4 7 | &Cw)
I steepest descent v Vv 6
F natural gradient | / +/ 10
G Gauss-Newton v KV 14
H Newton’s method | / v 18

Table 1. Passes needed to compute gradient J' and fast matrix-vector product Cwv,
and associated cost (for a multi-layer perceptron) in flops per weight and pattern, for
various choices of curvature matrix C.

4 Application to Stochastic Meta-Descent (SMD)

Algorithm. SMD [2-5] is a new, highly effective online algorithm for local learn-
ing rate adaptation. It updates the weights w by the simple gradient descent

w1 = wy — pe-J, 9)

where - denotes element-wise multiplication, and .J' the stochastic gradient. The
vector p of local learning rates is adapted multiplicatively:

Pt = D1 'maX(%a 1+ pve-J'), (10)

using a scalar meta-learning rate p. This update minimizes the network’s loss
with respect to p by exponentiated gradient descent [9], but has been re-linearized
5o as to avoid the computationally expensive exponentiation operation [10]. The
auxiliary vector v used in (10) is itself updated iteratively via

Vg1 = Avg + pe-(J = ACvy), (11)

where C' is the curvature matrix, and 0 <A <1 a forgetting factor for nonsta-
tionary tasks. C'v; is computed via the fast algorithms described above.

Benchmark setup. We illustrate the behavior of SMD on the “four regions”
benchmark [11]: a fully connected feedforward network A with two hidden lay-
ers of 10 tanh units each (Fig. 1, right) is to classify two continuous inputs in
the range [-1,1] into four disjoint, non-convex regions (Fig. 1, left). We use the
standard softmax output nonlinearity M with matching cross-entropy loss £,
meta-learning rate p = 0.05, initial learning rates py = 0.1, and uniformly ran-
dom initial weights in the range [-0.3,0.3]. Training patterns are generated online
by drawing independent, uniformly random input samples; they are presented
in mini-batches of 10 patterns each. Since each pattern is seen only once, the
empirical loss provides an unbiased estimate of generalization ability.

Fig. 1. The four regions task (left), and the network we trained on it (right).

15 15 15

H F G
1.0 1.0 1.0
0.5 0.5 0.5
—
0'OI'I'I'I'I'I I'I'I'I'I'IO'OI'I'I'I'I'I
Ok 2k 4k 6k 8k 10k Ok 2k 4k 6k 8k 10k Ok 2k 4k 6k 8k 10k

Fig. 2. Loss curves for 25 runs of SMD with A = 1, when using the Hessian (left),
the Fisher information (center), or the extended Gauss-Newton matrix (right) for C in
Equation (11). Vertical spikes indicate divergence.

Curvature matrix. Fig. 2 shows loss curves for SMD with A =1 on the four
regions problem, starting from 25 different random initial states, using the Hes-
sian, Fisher information, and extended Gauss-Newton matrix, respectively, for
C in Equation (11). With the Hessian (left), 80% of the runs diverge — most of
them early on, when the risk that H is not positive definite is greatest. When
we guarantee positive semi-definiteness by switching to the Fisher information
matrix (center), the proportion of diverged runs drops to 20%; those runs that
still diverge do so only relatively late. Finally, for our extended Gauss-Newton
approximation (right) only a single run diverges, illustrating the benefit of re-
taining certain second-order terms while preserving positive semi-definiteness.

Stability. The residual tendency of SMD to occasionally diverge can be sup-
pressed further by slightly lowering the A parameter. By curtailing the memory
of iteration (11), however, this can compromise the rapid convergence of SMD,
resulting in a stability /performance tradeoff (Fig. 3):

05

. I‘

N ClA
0.4 o
\
0.3 S

\

0.2

01 mm T

—

0.0 F——— : — :
1k 2% Bk 10k 20k

Fig. 3. Average loss over 25 runs of SMD for various combinations of curvature matrix
C and forgetting factor A. Memory (A — 1) is key to rapid convergence.

With the extended Gauss-Newton approximation, a small reduction of A
to 0.998 (solid line) is sufficient to prevent divergence, at a moderate cost in
performance relative to A=1 (dashed). When the Hessian is used, by contrast,
A must be set as low as 0.95 to maintain stability, and convergence is slowed
much further (dash-dotted). Even so, this is still significantly faster than the
degenerate case of A =0 (dotted), which in effect implements IDD [12], the to
our knowledge best competing online method for local learning rate adaptation.

From these experiments it appears that memory (i.e., A close to 1) is key to
achieving the rapid convergence characteristic of SMD. We are now investigating
other, more direct ways to keep iteration (11) under control, aiming to ensure
the stability of SMD while maintaining its excellent performance at A = 1.

Acknowledgment. We would like to thank Jenny Orr and Barak Pearlmutter
for many helpful discussions, and the Swiss National Science Foundation for the
financial support provided under grant number 2000-052678.97/1.

References

1. B. A. Pearlmutter, “Fast exact multiplication by the Hessian,” Neural Computa-
tion, vol. 6, no. 1, pp. 147-160, 1994.

2. N. N. Schraudolph, “Local gain adaptation in stochastic gradient descent,” in Proc.
9th Int. Conf. Artificial Neural Networks, pp. 569-574, IEE, London, 1999.

3. N. N. Schraudolph, “Online learning with adaptive local step sizes,” in Neural Nets
— WIRN Vietri-99: Proc. 11th Italian Workshop on Neural Networks (M. Marinaro
and R. Tagliaferri, eds.), Perspectives in Neural Computing, (Vietri sul Mare,
Salerno, Italy), pp. 1561-156, Springer Verlag, Berlin, 1999.

4. N. N. Schraudolph, “Fast second-order gradient descent via O(n) curvature matrix-
vector products,” Tech. Rep. IDSIA-12-00, IDSIA, Galleria 2, CH-6928 Manno,
Switzerland, 2000. Submitted to Neural Computation.

5. N. N. Schraudolph and X. Giannakopoulos, “Online independent component anal-
ysis with local learning rate adaptation,” in Adv. Neural Info. Proc. Systems (S. A.
Solla, T. K. Leen, and K.-R. Miiller, eds.), vol. 12, pp. 789-795, The MIT Press,
Cambridge, MA, 2000.

6. C. M. Bishop, Neural Networks for Pattern Recognition. Oxford: Clarendon, 1995.

7. S.-i. Amari, Differential-Geometrical Methods in Statistics, vol. 28 of Lecture Notes
in Statistics. New York: Springer Verlag, 1985.

8. S.-i. Amari, “Natural gradient works efficiently in learning,” Neural Computation,
vol. 10, no. 2, pp. 251-276, 1998.

9. J. Kivinen and M. K. Warmuth, “Additive versus exponentiated gradient updates
for linear prediction,” in Proc. 27th Annual ACM Symp. Theory of Computing,
(New York, NY), pp. 209-218, Association for Computing Machinery, 1995.

10. N. N. Schraudolph, “A fast, compact approximation of the exponential function,”
Neural Computation, vol. 11, no. 4, pp. 853-862, 1999.

11. S. Singhal and L. Wu, “Training multilayer perceptrons with the extended Kalman
filter,” in Adv. Neural Info. Proc. Systems: Proc. 1988 Conf. (D. S. Touretzky, ed.),
pp. 133-140, Morgan Kaufmann, 1989.

12. M. E. Harmon and L. C. Baird III, “Multi-player residual advantage learning with
general function approximation,” Tech. Rep. WL-TR-1065, Wright Laboratory,
WL/AACF, 2241 Avionics Circle, Wright-Patterson AFB, OH 45433-7308, 1996.

