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In computer aided surgery the accurate simulation of the mechanical behavior of human organs is essential 

for the development of surgical simulators. In this paper we introduce particle based simulations of two 

different human organ materials modeled as a linear viscoelastic solids. The constitutive equations for the 

material behavior are discretized using a particle approach based on the Smoothed Particle Hydrodynamics 

(SPH) method while the body surface is tracked using level sets . A key aspect of this approach is its 

flexibility which allows the simulation of complex time varying topologies with large deformations. The 

accuracy of the original formulation is significantly enhanced by using a particle reinitialization technique 

resulting in remeshed Smoothed Particle Hydrodynamics (rSPH). The mechanical parameters of the 

systems used in the simulations are derived from experimental measurements on human cadaver organs. 

We compare the mechanical behavior of liver- and kidney-like materials based on the dynamic simulations 

of a tensile test case. Moreover, we present a particle based reconstruction of the liver topology and its 

strain distribution under a small local load.   
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1. Introduction 

The modeling and simulation of human organs such as soft biological tissue  is important for a variety of 

medical applications including surgical planning, training and assistance through a surgery simulator based 

on virtual reality concepts [18]. The modeling and the simulation of soft biological tissue traditionally 

involve formulations using mass-spring models  [19], or finite-element methods [5]. Mass-spring systems 

have been popular due to their easy implementation and low computational cost for real-time applications. 

However, the relationship between the true material properties of the organs and the structure of the mass-

spring network and its parameters  is a subject of extensive experimentation.   

Finite Element Methods (FEM) are commonly used for simulations of deformable bodies in continuum 

mechanics. Due to their computational cost ordinary finite elements methods are not used often for real-

time application. However, when the tissue is restricted to be a linear elastic material, it is possible to 

achieve real-time performance using only a limited number of nodes  [5].  When considering nonlinear 

elasticity the finite element method leads, in general, to an implicit equation that needs to be solved 

iteratively, thus hindering real-time implementations. In addition when considering virtual surgery 

simulations involving cut surfaces and fluid-structure interactions the use of adaptive finite element 

methods requires a significant computational cost to resolve changes in the geometry and material 

properties.  

Particle based methods such as vortex methods [4] and Smoothed Particle Hydrodynamics (SPH)  [7, 13, 

14] aim to bridge the gap between the efficient but low order mass-spring models with the high accuracy, 

but computationally expensive finite-element methods. Vortex and SPH methods approximate the 

governing partial differential using particles as computational elements.  The material field quantities are 

represented by a linear superposition of the material quantities carried by the particles and weighted by a 

smooth interpolation kernel. The method is inherently adaptive as particle attributes (strength, locations) 

evolve according to their material time derivatives. However, the deformations associated with standard 

particle methods often lead to large inaccuracies of the quantities that are been simulated. In order to 

circumvent this problem  remeshing of particle methods using moment conserving schemes was introduced 

in [11]. The moment conserving remeshing schemes developed in [10] have been then applied in the 
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context of SPH resulting in the method of Remeshed SPH (rSPH) [1]. rSPH involves a simple 

reinitialization technique of the particle locations (remeshing) whose strengths are adjusted so as to 

conserve moments of the resolved field quantities. Some advantages of our implementation include the 

possibility of a unified approach for treating fluids and solids and the flexible handling of complex 

topologies because no explicit connectivity information of the computational elements needs to be provided 

[8]. 

The present paper describes the fundamental numerical formulation by considering the rSPH solution of 

dynamic solid mechanics problems. We present results from one-dimensional solid-structure interactions 

and from deformation simulations of liver- and kidney-like materials based on a linear viscoelastic solid 

model for small deformations. In our simulations the Young’s modulus is chosen according to experimental 

results [15], where aspiration experiments on human cadaver livers and kidneys, were used to derive the 

relaxation modulus.  

 

2. Governing equations and SPH formulation 

2.1. Mathematical model of the soft biological tissue 

The mechanical behavior of soft biological tissue is modeled as a linear viscoelastic material for small 

strains. The governing equations are based on the conservation laws of continuum mechanics for mass and 

momentum  
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where ρ is the density, v  the velocity field, σ  the Cauchy stress tensor, extf  external body force, and 

D
Dt  denotes the material derivative 
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where x denotes the location of the material elements. The stress tensor depends on the constitutive model 

of the considered material. Here, we approximate the biological material as a linear viscoelastic solid. The 

solid model is based on Hooke’s law [2] extended by Kelvin-Voigt damping model  [9]. Thus, the 

components ijσ  of the stress tensor σ  depend linearly on the comp onents  ijε   of the Cauchy Green 

strain tensorε ,  
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 The indices i, j, k =1, 2, 3 follow the Einstein’s summation convention and ijδ  is the Kronecker symbol. 

The time constant T is the relaxation time, and the Lamé constants  µ, ? are defined by 
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where E  represents the Young’s modulus and ? the Poisson’s ratio. For small deformations the strain tensor 

ε  evolves according to the deformation rate 

 

 1
2 ( ( ) )TD

v v
Dt

ε
= ∇ + ∇ . (7) 

 



 5 

The boundary of an elastic material can be fixed or moved with a prescribed velocity. Alternatively, it can 

be stress-free or exposed to a mechanical load.  

2.2. Smoothed Particle Hydrodynamics (SPH) 

In Smoothed Particle Hydrodynamics the elastic material is discretized onto particle carrying information 

about their position, velocity, mass, density, strain and stress.  The particles move according to their 

velocity v and their position x changes as governed by Eq. (4). 

In the SPH approximation any field quantity A is interpolated at a position r by a weighed sum of 

contributions from all particles: 

 

 ( ) ( ),b b b
b

A r A V W r r h= −∑ ,  (8)  

 

where the summation extends over all particles, bA denotes the function value at the location of the b-th 

particle, and bV the volume of the b-th particle. The smoothing kernel W(r, h) is a mollifying 

approximation of the Dirac-function, i.e.  

 
0

( ) lim ( , ) ,
h

x W x hδ
→

=  (9) 

 

where h is the smoothing length. In the present implementation, a quartic spline kernel is used constructed 

by B-splines having continuous first, second and third derivatives [1]. The smoothing length h is  set to 

be1.25 x∆ , where x∆ is the initial particle spacing. The derivative of any interpolated function A can be 

derived by differentiation of Equation (8) applying the derivative to the smoothing kernel W(x, h). For a 

conservative formulation a symmetric form is used when computing spatial derivatives, thus let  

i a

A
x

∂
∂

denote the particle approximation of the first derivative of the a-th particle located at ar  [14], then 
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By applying Equation (10) to the conservation equations (1) and (2) we obtain 
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The strain evolution equation (7) becomes 
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2.3. Stress-free boundary condition 

 

The stress-free boundary condition implies that the surface traction t  is equal to zero: 

 

 0,s st nσ= =  (14) 

 

where sσ is the stress tensor on the surface and sn the surface normal. Previous implementations of the 

stress-free boundary condition in two dimensions involved the manipulation of the stress tensor rotated into 

local coordinate system oriented according to the surface normal [16, 17].  In three dimensions the 
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determination of the local coordinate system and the forward and backward rotations are computationally 

expensive operations.  We avoid these operations by using a penalty force. We evaluate the surface traction 

pt on the boundary particles as the product of the particle stress tensor pσ and its surface normal (cf. Eq.  

(14)) .  According to this surface traction we apply a body force (cf. Eq. (2) ) to the boundary particle to 

cancel the surface traction.  

The surface normal sn  is determined by a hybrid particle level-set method. In the hybrid particle level-set 

method the particles carry the distance F to the material surface and the unit surface normal sn on the 

particle is approximated by 

  

 .p
p

p

n
∇Φ

=
∇Φ

 (15) 

During the simulation the distance field F moves with the particles and gets distorted. Due to the small 

deformations of the material, however, it is not necessary to re-initalize the distance field F . 

 

3. Remeshing 

 

To secure the convergence of the method the particle map must be regular [4]. This is achieved by a 

reinitialization scheme (remeshing) in which the conserved quantities are redistributed onto a new set of 

particles with the spacing x∆ . The quantities are interpolated by the smooth interpolation kernel M’4 of 3rd 

order: 
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The interpolated quantity Q must be a conserved extensive property of the particle. In this study the particle 

quantities of the linear viscoelastic solid are mass, momentum and the product of strain components and 

volume.  The quantities of the new particles are interpolated in three dimensions by using a tensorial 

product of the remeshing kernel M’4. 

Fig. 1, Fig. 2 and Fig. 3  demonstrate the effect of remeshing particles in a simple deformation test case [6]. 

A sphere of radius 0.15 placed within a unit computational domain at (0.35, 0.35, 0.35) is driven by a three 

dimensional velocity field 
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 (18) 

 

From the initial set of 40x40x40 particles uniformly distributed in a unit domain, particles outside the 

sphere are rejected before the convection, which results in a set of about 900 particles. Fig. 1 and Fig. 2 

show the particle solution without and with remeshing, at T=0.0, 0.4 and 0.6. In the final frames at T=0.8 

(Fig. 3) the deformation has teared the object apart whereas the remeshed object still shows a non-ruptured 

surface. 

  

4. Fluid-structure interactions 

Often, organs interact with fluids, such as blood in a vessel or air in the lungs. Therefore we also consider 

fluid-structure interactions for biological systems . Here we start with a one dimensional test case where a 

linear elastic solid interacts with a viscous fluid. The fluid is described through the Burger’s equation and 
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the solid by a one-dimensional wave equation. We solve a unified formulation of this system [8] as recently 

proposed by Cottet [3] . Thus, the fluid velocity u(x,t) and the solid displacement d(?,t) is governed by 

 

 

  (19) 

 

where Fχ and Sχ  are characteristic functions defining the fluid and solid domain, respectively. The 

Eulerian coordinate x and the Lagrangian coordinate ? are related through ( , ) ( , )x t d tξ ξ ξ= + .  

We set solid elasticity coefficient µ=1 and the solid elasticity coefficient ?=0.001. Initially the fluid is 

located in the interval [-0.5,0]  and the solid in [0,0.5]. The initial conditions are  

 

 
( ,0) 0,
( ,0) 0.1(cos(2 ) 1).

d x
u x xπ

=
= − +

 (20) 

 

The imposed boundary conditions require the materials to be at rest at the outer limits of the computational 

domain and are expressed by  
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∂
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 (21) 

 

In our test case the map of the solid particles remains uniform and the reinitialization scheme is only 

applied to the fluid particles conserving the particle momentum. To approximate the particle derivatives at 

the interface we use one-sided differentiation. Fig. 4 shows the velocity profiles of a rSPH and an ALE 

solution using 100 computational elements.  The results show that the particle method is more robust that 

the ALE method with the ALE method overshooting in fluid regions with high velocity gradients.  When 

compared to a high resolution particle simulation with 400 particles, the rSPH method is more accurate 

1
2

F F S F Su u u x u d
u u

t x x x x
χ χ χ υ χ µ χ

ξ ξ
   ∂ ∂ ∂ ∂ ∂ ∂ ∂
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than the ALE solution with L2-errors of 0.04 and 0.14, respectively.  The extension of this approach to 

higher dimensions is presently under consideration. 

 

 

5. Results 

5.1. Determination of material parameters 

The Young’s modulus needed to determine the Lamé constants in Equation (7) is obtained from 

experimental results [15].  Based on the aspiration experiments on human cadaver livers and kidneys, the 

relaxation modulus E(t) was determined. As an approximation we chose the Young’s modulus, E as the 

limit of the relaxation modulus when time goes to infinity to ensure the same stationary solution. The 

values of the Young’s moduli we used are 0.1MPa for the liver and 0.01MPa for the kidney. Due to the 

high water content of the organs the density can be approximated by the density of water (1000 kg/m3) in 

all cases. The relaxation times (T ) is chosen large enough to prevent oscillations (here 0.2LiverT = ,  

0.2KidneyT = ). A Poisson’s ratio of 0.3 is used.  

 

5.2. Simulation of human organs 

Tensile test cases were conducted on an initially undeformed unit cube of elastic material. All physical 

quantities are normalized by their characteristic values (density 0ρ =1000kg/m3, length 0x =1m, time  

0T =1s).  A cubic domain discretized with 343 particles is fixed on the bottom, and a normalized load of 1 

is applied to the top. The simulations where performed on an AMD Athlon 1.5 GHz PC with 1024 MB 

RAM.  For the time integration, we use a fourth order Runge-Kutta scheme with a normalized timestep of 

0.001 for the liver and 0.0001 for the kidney material. The computations run at a rate of 25 timesteps per 

second.  Fig. 5 shows the resulting time his tory of the extension of the liver and kidney material computed 

as the displacement of the top particles divided by the original length of the cube. At the beginning of the 

simulation the acceleration of the top is very high due to lack of internal forces. The motion of the particles 

creates strain resulting in a stress distribution which acts against the load. The displacement is approaching 
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a stationary level where load and surface traction balances each other. The viscosity of the material 

dissipates kinetic energy and prevents the solid from oscillating. Since the liver is much stiffer than the 

kidney the displacement of the liver cube is much smaller than the one of the kidney cube under the same 

load. 

Fig. 6 shows the 3D surface reconstruction of a virtual liver discretized by 144 particles. The liver topology  

shown in Fig. 6 was originally described as a triangular mesh segmented from images data of the Visible 

Human Project ®.  The internal liver structure is very complex, containing a huge network of functional cell 

groups (muralia ) riddled with blood vessels. Therefore, the entire liver structure is not resolvable with 

today’s simulation techniques and as a first approximation, we consider the liver as a isotropic elastic 

material. The interior of the liver was sampled into a uniformly distributed set of particles carrying the 

same mass and density. The visualization of the liver surface is performed by rendering an isosurface of the 

zero level set triangulated by the marching cube algorithm [12]. Although only a small number of particles 

is used and some anatomical details are lost the topology of the liver is well recognizable. A very small 

load (270 Pa) was applied to the upper-right part of the liver body by smearing out a local load pushing the 

surface to the bottom of the liver body. The load caused the very small deformations that are not noticeable 

when comparing the topology. Fig. 7 shows the resulting normal strain distribution on the liver surface in 

grayscale at an early transient state. 

 

6. Conclusions 

We presented rSPH to simulate solid-fluid interactions as they occur in biological systems. We report 

preliminary results in implementing particle based simulations in the context of rSPH in order to compare 

the mechanical behavior of human liver- and kidney-like materials under the same mechanical constrains.  

A particle-level set reconstruction of a liver topology is presented based on a low resolution particle 

discretization. A simulation of the mechanical behavior of the liver was performed by applying a small load 

to the surface. 

Current research is directed in analysing the convergence, the stability and robustness of the simulations 

along with large scale simulations and a validation from exp erimental results.  Beyond the realm of linear 

elasticity we will be employing rSPH to handle large scale organ deformations. 



 12 

 

7. Acknowledgements 

The authors wish to acknowledge several helpful discussions with Dr. A. Chaniotis, ETH Zurich, 

Switzerland. We gratefully acknowledge the support from the National Center of Competence in Research 

CO-ME, Switzerland. We wish to thank the Computer Vision Laboratory, ETH Zurich, for providing the 

liver topology.    

 

 

 

 

8. References 

[1] A. K. Chaniotis, D. Poulikakos, and P. Koumoutsakos, Remeshed Smoothed 
Particle Hydrodynamics for the Simulation of Viscous and Heat Conducting 
Flows, Journal of Computational Physics, 182 (2002), pp. 67-90. 

[2] T. J. Chung, Applied Continuum Mechanics, Cambridge University Press, 1996. 
[3] G. H. Cottet, A particle model for fluid-structure interaction, C.R. Acad. Sci. 

Paris, Ser. I (2002), pp. 833-838. 
[4] G. H. Cottet and P. Koumoutsakos, Vortex Methods: Theory and Practice, 

Cambridge University Press, 2000. 
[5] G. Debunne, M. Desbrun, M.-P. Cani, and A. Barr, Dynamic Real-Time 

Deformations using Space & Timing Adaptive Sampling, Conference 
proceedings, SIGGRAPH 2001, Los Angeles, 2001. 

[6] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell, A hybrid particle level set 
method for improved interface capturing, Journal of Computational Physics, 183 
(2002), pp. 83-116. 

[7] R. A. Gingold and J. J. Monaghan, Smoothed particle hydrodynamics: theory and 
applications to non-sperical stars, Monthly Notices of the Royal Astronomical 
Society, 181 (1977), pp. 375-389. 

[8] S. E. Hieber, J. H. Walther, and P. Koumoutsakos, Fluid-Structure Interactions 
Using rSPH, Conference proceedings, Summer School on Multiscale Modeling 
and Simulation, Lugano, Switzerland, 2003. 

[9] G. A. Holzapfel, Nonlinear solid mechanics:a continuum approach for 
engineering, WILEY, 2001. 

[10] P. Koumoutsakos, Inviscid axisymmetrization of an elliptical vortex, Journal of 
Computational Physics, 138 (1997), pp. 821-857. 

[11] P. Koumoutsakos and A. Leonard, High-Resolution Simulations of the Flow 
around an Impulsively Started Cylinder Using Vortex Methods, Journal of Fluid 
Mechanics, 296 (1995), pp. 1-38. 



 13 

[12] W. E. Lorensen and H. E. Cline, Marching cubes: A high resolution 3D surface 
construction algorithm, Conference proceedings, 14th annual conference on 
Computer graphics an interactive techniques, 1987. 

[13] L. B. Lucy, Numerical Approach to Testing of Fission Hypothesis, Astronomical 
Journal, 82 (1977), pp. 1013-1024. 

[14] J. J. Monaghan, Smoothed particle hydrodynamics, Annual Review of Astronomy 
and Astrophysics, 30 (1992), pp. 543-574. 

[15] A. Nava, E. Mazza, F. Kleinermann, N. J. Avis, and M. J., Determination of the 
mechanical properties of soft human tissues through aspiration experiments, 
Conference proceedings, MICCAI 03, Montreal, Canada, 2003. 

[16] P. W. Randles and L. D. Libersky, Smoothed particle hydrodynamics: Some 
recent improvements and applications, Computer Methods in Applied Mechanics 
and Engineering, 139 (1996), pp. 375-408. 

[17] P. W. Randles and L. D. Libersky, Normalized SPH with stress points, 
International Journal for Numerical Methods in Engineering, 48 (2000), pp. 1445-
1462. 

[18] G. Szeleky, C. Brechbler, R. Hutter, A. Rhomberg, and P. Schmidt, Modelling of 
soft tissue deformation for laparoscopic surgery simulation, medical image 
computing and computer-assisted intervention, Conference proceedings, MICCAI 
'98, Cambridge, MA, 1998. 

[19] D. Terzopoulous and K. Fleischer, Deformable Models, The Visual Computer, 4 
(1988), pp. 306-331. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 14 

 

 

 

 

 

Fig. 1 Deformation test case without remeshing having an initial particle of 0.05 (top) and 0.01 

(bottom). 
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Fig. 2 Deformation test case with remeshing having an initial particle spacing of 0.05 (top) and 0.01 

(bottom). 
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Fig. 3 Surfaces at T=0.8 with an initial particle spacing of  0.05 (a) and 0.01 (b) without remeshing, 

and with remeshing (c), (d).   
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Fig. 4 Fluid-solid interactions. Velocity profiles t=0.0, 0.5, 1.0 and 2.0 of the rSPH solution using 100 

particles (fluid --, solid -) and the ALE solution (. -) [8]  
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Fig. 5 The computed extecsion (normalized displacement) of the tensile test for the kidney (--) and 

liver (-) material. 
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Fig. 6 The original liver topology (a), the virtual liver with its particle representation (b) using 144 

particles. 
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Fig. 7 The virtual liver with its particle representation (144 particles) under a local mechanical load. 

The grayscale of the surface corresponds to the local normal strain (a) and shear strain (b)  

 

(a) (b) 


