Massively Parallel Vortex Particle Simulations of Aircraft Wakes

Philippe Chatelain

with: M. Bergdorf, D. Rossinelli, P. Koumoutsakos and A. Curioni (IBM Research)
Outline

• Motivation
• Vortex Particle Method
• Medium Wavelength Instability
• Optimization of Wake Decay
• Conclusions
Motivation
Motivation

- **COMPUTATION**
 - Massively Parallel Simulations Using Particles
 - IBM/BG: Distributed memory (10⁴ - 10⁵ CPUS), with low RAM per node
 - Achieve sustained $O(\text{Tflops})$ performance
Motivation

- **COMPUTATION**
 - Massively Parallel Simulations Using Particles
 - IBM/BG: Distributed memory ($10^4 - 10^5$ CPUS), with low RAM per node
 - Achieve sustained O(Tflops) performance

- **PHYSICS**
 - Optimization of aircraft wake decay
 - aircraft & lift devices design
 - High Reynolds DNS
 - Capture accurate decay of vortical flows
 - Physical insight - Basis for turbulent models
Vortex Particle Method
Vortex Particle Method

• GOVERNING EQUATIONS
 • Navier-Stokes, incompressible

\[
\nabla \cdot \mathbf{u} = 0 \\
\frac{D\mathbf{u}}{Dt} = -\frac{1}{\rho} \nabla p + \nu \Delta \mathbf{u}
\]
Vortex Particle Method

- GOVERNING EQUATIONS
 - Navier-Stokes, incompressible
 \[
 \nabla \cdot \mathbf{u} = 0
 \]
 \[
 \frac{D\mathbf{u}}{Dt} = -\frac{1}{\rho}\nabla p + \nu \Delta \mathbf{u}
 \]
 - Vorticity form
 \[
 \nabla \cdot \mathbf{u} = 0
 \]
 \[
 \frac{D\omega}{Dt} = (\omega \cdot \nabla)\mathbf{u} + \nu \Delta \omega
 \]
Vortex Particle Method

• **GOVERNING EQUATIONS**

 • Navier-Stokes, incompressible

 • Vorticity form

 • with velocity field

\[
\begin{align*}
\nabla \cdot \mathbf{u} &= 0 \\
\frac{D\mathbf{u}}{Dt} &= -\frac{1}{\rho} \nabla p + \nu \Delta \mathbf{u} \\
\nabla \cdot \mathbf{u} &= 0 \\
\frac{D\omega}{Dt} &= (\omega \cdot \nabla)\mathbf{u} + \nu \Delta \omega \\
\mathbf{u} &= \nabla \times \psi \\
\Delta \psi &= -\omega \\
\nabla \cdot \psi &= 0
\end{align*}
\]
Vortex Particle Method

- **GOVERNING EQUATIONS**
 - Navier-Stokes, incompressible
 - Vorticity form
 - with velocity field

- **DISCRETIZATION**

\[
\begin{align*}
\nabla \cdot \mathbf{u} &= 0 \\
\frac{D\mathbf{u}}{Dt} &= -\frac{1}{\rho} \nabla p + \nu \Delta \mathbf{u} \\
\nabla \cdot \mathbf{u} &= 0 \\
\frac{D\omega}{Dt} &= (\omega \cdot \nabla) \mathbf{u} + \nu \Delta \omega \\
\mathbf{u} &= \nabla \times \psi \\
\Delta \psi &= -\omega \\
\nabla \cdot \psi &= 0
\end{align*}
\]
Vortex Particle Method

• **GOVERNING EQUATIONS**

 - Navier-Stokes, incompressible

 - Vorticity form

 - with velocity field

• **DISCRETIZATION**

 - Particles: position x_p and strength $\alpha_p = \int_{V_p} \omega \, dV \simeq \omega_p \, V_p$

\[
\begin{align*}
\nabla \cdot \mathbf{u} &= 0 \\
\frac{Du}{Dt} &= -\frac{1}{\rho} \nabla p + \nu \Delta \mathbf{u} \\
\nabla \cdot \mathbf{u} &= 0 \\
\frac{D\omega}{Dt} &= (\omega \cdot \nabla)\mathbf{u} + \nu \Delta \omega \\
\mathbf{u} &= \nabla \times \psi \\
\Delta \psi &= -\omega \\
\nabla \cdot \psi &= 0
\end{align*}
\]
Vortex Particle Method

- **GOVERNING EQUATIONS**
 - Navier-Stokes, incompressible
 \[
 \nabla \cdot u = 0 \\
 \frac{Du}{Dt} = -\frac{1}{\rho} \nabla p + \nu \Delta u
 \]
 - Vorticity form
 \[
 \nabla \cdot u = 0 \\
 \frac{D\omega}{Dt} = (\omega \cdot \nabla) u + \nu \Delta \omega
 \]
 - with velocity field
 \[
 u = \nabla \times \psi \\
 \Delta \psi = -\omega \\
 \nabla \cdot \psi = 0
 \]

- **DISCRETIZATION**
 - Particles: position \(x_p \) and strength \(\alpha_p = \int_{V_p} \omega \ dV \approx \omega_p \ V_p \)

- **EVOLUTION EQUATIONS**
 \[
 \frac{dx_p}{dt} = u(x_p) \\
 \frac{d\alpha_p}{dt} = ((\omega \cdot \nabla) u(x_p) + \nu \nabla^2 \omega(x_p)) \ V_p
 \]
Vortex Particle Method
Vortex Particle Method

- Particle methods **ARE NOT MESH-FREE**
Vortex Particle Method

- **ACCURATE** Particle methods ARE NOT MESH-FREE

 ➡ Particle distortion = loss of convergence

\[
\frac{D\Gamma_p}{Dt} = 0
\]

Euler Equations (2D : \(u-w\)) for an incompressible evolution of an axi-symmetric vortex patch.
Remeshed Particle Methods

\[Q_p^{\text{new}} = \sum_{p'} Q_{p'} M(j h - x_{p'}) \]

Interpolation Kernel \(M(x) \)
- Moment conserving
- Tensorial Product of 1D kernels
Remesh Particle Methods

- Remesh: reinitialize particles onto regular locations

\[Q_p^{\text{new}} = \sum_{p'} Q_{p'} M(jh - x_{p'}) \]

Interpolation Kernel \(M(x) \)
- Moment conserving
- Tensorial Product of 1D kernels
Remeshed Particle Methods

- **Remesh**: reinitialize particles onto regular locations

\[Q_p^{\text{new}} = \sum_{p'} Q_{p'} M(j \ h - x_{p'}) \]

Interpolation Kernel \(M(x) \)

- **Moment** conserving
- **Tensorial Product of 1D kernels**
Remeshed Particle Methods

- **Remesh**: reinitialize particles onto regular locations

\[Q_{p}^{\text{new}} = \sum_{p'} Q_{p'} M(j h - x_{p'}) \]

Interpolation Kernel \(M(x) \)
- Moment conserving
- Tensorial Product of 1D kernels

- Mesh also used for the efficient computation of **Right-Hand Side**
Vortex particle method
Vortex particle method

- Hybrid scheme
 - Mesh: RHS evaluations
Vortex particle method

- Hybrid scheme
 - Mesh: **RHS** evaluations
 - Differential operators (F.D.)
 - Fast Poisson solver (Fourier)
Vortex particle method

- Hybrid scheme
 - Mesh: **RHS** evaluations
 - Differential operators (F.D.)
 - Fast Poisson solver (Fourier)
 - Particles only handle **advection**

\[
\frac{D\omega}{Dt} = \frac{\partial \omega}{\partial t} + \nabla \cdot (\omega u)
\]
Vortex particle method

- Hybrid scheme
 - Mesh: **RHS** evaluations
 - Differential operators (F.D.)
 - Fast Poisson solver (Fourier)
 - Particles only handle **advection**
 \[
 \frac{D\omega}{Dt} = \frac{\partial \omega}{\partial t} + \nabla \cdot (\omega u)
 \]
 - Particles and Mesh communicate through interpolation

\[
\alpha_p \rightarrow \omega_{ij}
\]
Vortex particle method

- **Hybrid scheme**
- **Mesh:** RHS evaluations
 - Differential operators (F.D.)
 - Fast Poisson solver (Fourier)
- **Particles only handle advection**
 \[
 \frac{D\omega}{Dt} = \frac{\partial \omega}{\partial t} + \nabla \cdot (\omega u)
 \]
- **Particles and Mesh communicate through interpolation**
Implementation

- Code is client of the PPM library
- Parallel Particle Mesh Library (Fortran 90, MPI)
- Client and library tuned for BG/L

Weak eff.: constant size per CPU

Strong eff.: constant total size

Sbalzarini et al, JCP 2006
Chatelain et al, CMAME 2008

IBM T. J. Watson Center, Yorktown Heights, NJ
IBM Zurich Research Laboratory
Implementation

- Code is client of the **PPM** library
- **Parallel Particle Mesh** Library (Fortran 90, MPI)
- Client and library *tuned* for BG/L

Weak eff.: constant size per CPU

Strong eff.: constant total size

PPMers: I. Sbalzarini, J. Walther, M. Bergdorf, P. Chatelain, S. Hieber, E. Kotsalis, P. Koumoutsakos, F. Milde, M. Quack, B. Hejazi Alhosseini

IBMT J. Watson Center, Yorktown Heights, NJ

IBM Zurich Research Laboratory

Sbalzarini et al, JCP 2006

Chatelain et al, CMAME 2008
Implementation

- Code is client of the **PPM** library
- **Parallel Particle Mesh** Library (Fortran 90, MPI)
- Client and library *tuned* for BG/L

Weak eff.: constant size per CPU

- Without Poisson solver
- ~ 400000 particles per CPU

Strong eff.: constant total size

- Per-CPU problem size

First prod. run 10^{10}

PPMers: I. Sbalzarini, J. Walther, M. Bergdorf, P. Chatelain, S. Hieber, E. Kotsalis, P. Koumoutsakos, F. Milde, M. Quack, B. Hejazi Alhosseini

IBM T. J. Watson Center, Yorktown Heights, NJ
IBM Zurich Research Laboratory

Sbalzarini et al, JCP 2006
Chatelain et al, CMAME 2008
Medium Wavelength Instability
Medium Wavelength Instability

- Long domain
- Periodic in all directions
- Initiation by ambient noise

Ortega, J.M. et al., JFM 2003
Durston D.A. et al., J Aircraft 2005
Medium Wavelength Instability

- Long domain
- Periodic in all directions
- Initiation by ambient noise

Physical parameters
- $\text{Re} = 6,000$
- Circulation ratio $\Gamma_2/\Gamma_1 = -0.35$
- Span ratio $b_2/b_1 = 0.5$
- Domain $L_x = 10b_1$
- Time = 0.35
- Ambient white noise $u_{\text{RMS}} = 0.5\%$

Numerical parameters
- $\sim 1.6 \times 10^9$ particles
- $1024 \times 768 \times 2,048$ grid
- 10,000 time steps
- RK3 Low-storage
- 4th order FD

CPU parameters
- IBM BlueGene/L
- 4096 CPUs
- 100 hours

Ortega, J.M. et al., JFM 2003
Durston D.A. et al., J Aircraft 2005
Medium Wavelength Instability

- Spectra
 - Mode $\lambda/b_1 = 0.86 - 0.943$
 - Experimental $\lambda/b_1 = 0.9 - 1.3$
 - Bursts when Ω-loop feet come together
- Cross-flow energy
 - Visualization: volume rendering of $|\omega|$

Rossinelli D. et al., SIGGRAPH08
Instability: Linear phase $t=0.21$
Instability: **Linear phase** $t=0.21$
Instability: \textbf{Reconnections} $t=0.25$
Instability: **Reconnections** $t=0.25$
Instability: **Propagation** $t=0.27$
Instability: Propagation $t=0.27$
Instability: Decay $t=0.35$
Instability: **Decay** $t=0.35$

- Large Vortex Pair
- Series of Vortex Rings
Optimization of Vortex Decay

• Find fastest decaying wake configuration
 • in terms of global end-result: energy, induced rolling moment,...
Optimization of Vortex Decay

• Find fastest decaying wake configuration
 • in terms of global end-result: energy, induced rolling moment,...

• Given, e.g.
 • a range in trim
 • active device perturbations
Optimization of Vortex Decay
Optimization of Vortex Decay

- Configuration
 - Co-rotating pairs
 - Re = 2500

Crouch, JFM 1997
Optimization of Vortex Decay

- Configuration
 - Co-rotating pairs
 - Re = 2500

- Problem: minimize objective function

\[f_{\text{decay}} = \frac{\int_0^T E(t) \, dt}{E(0)T} \quad (T = 4) \]
Optimization of Vortex Decay

- Configuration
 - Co-rotating pairs
 - Re = 2500
- Problem: minimize objective function
 \[f_{\text{decay}} = \frac{\int_0^T E(t) \, dt}{E(0)T} \quad (T = 4) \]
- Challenges
 - \(f \) can be multi-modal, non-convex, etc.
 - \(\nabla f \) not readily available
 - evaluation of \(f \) is expensive

Crouch., JFM 1997
Optimization of Vortex Decay

• Configuration
 • Co-rotating pairs
 • Re = 2500

• Problem: minimize objective function
 \[f_{\text{decay}} = \frac{\int_0^T E(t) \, dt}{E(0)T} \quad (T = 4) \]

• Challenges
 • \(f \) can be multi-modal, non-convex, etc.
 • \(\nabla f \) not readily available
 • evaluation of \(f \) is expensive

• Approach
 • Evolutionary Optimization
 • Prior knowledge encoded in parametrization

Crouch, JFM 1997
Optimization of Vortex Decay

Evolutionary Algorithms (EAs)
- **iterative methods** operating with **populations** of candidate solutions
- Here: Covariance Matrix Adaptation - ES


```
Optimization of Vortex Decay

Evolutionary Algorithms (EAs)
- iterative methods operating with populations of candidate solutions
- Here: Covariance Matrix Adaptation - ES

```
Evolutionary Algorithms (EAs)

- **iterative methods** operating with **populations** of candidate solutions

- Here: Covariance Matrix Adaptation - ES

Optimization of Vortex Decay

Evolutionary Algorithms (EAs)
- iterative methods operating with populations of candidate solutions
- Here: Covariance Matrix Adaptation - ES

Optimization of Vortex Decay

Evolutionary Algorithms (EAs)
- **iterative methods** operating with populations of candidate solutions
- Here: Covariance Matrix Adaptation - ES

Evolutionary Algorithms (EAs)
- **iterative methods** operating with **populations** of candidate solutions
- Here: Covariance Matrix Adaptation - ES

Optimization of Vortex Decay

Selection

Evaluation

Parents $\{x_k\}_k^\mu$

Recombination

Mutation

Offspring $\{x_k\}_k^\lambda$

Stopping criteria fulfilled?

yes

no

$g = g + 1$

x_1

x_2

start with initial offspring population

$g = 0$

Initial offspring population

Optimization of Vortex Decay

Evolutionary Algorithms (EAs)
- **iterative methods** operating with **populations** of candidate solutions
- Here: Covariance Matrix Adaptation - ES

![Evolutionary Algorithm Diagram]

Optimization of Vortex Decay

Evolutionary Algorithms (EAs)
- **iterative methods** operating with **populations** of candidate solutions
- Here: Covariance Matrix Adaptation - ES

![Evolutionary Algorithm Diagram](http://www.cse-lab.ethz.ch/)

Evolutionary Algorithms (EAs)
- **iterative methods** operating with populations of candidate solutions
- Here: Covariance Matrix Adaptation - ES

Optimization of Vortex Decay

Evolutionary Algorithms (EAs)
- **iterative methods** operating with **populations** of candidate solutions
- Here: Covariance Matrix Adaptation - ES

- popular because of their flexibility and **robustness**

Diagram: Evolutionary Algorithm Flowchart

- **Selection**
- **Evaluation**
- **Recombination**
- **Mutation**
- **Offspring**

Starting with initial offspring population $\{x_k\}_{k=1}^{\lambda}$, the process evolves through the following steps:

1. **Stopping Criteria**
 - If fulfilled, stop.
 - If not, go to the next step.

2. **Parents** $\{x_k\}_{k=1}^{\mu}$
3. **Recombination**
4. **Mutation**
 - $x_k \sim P(\theta^{(g)})$

5. **Offspring** $\{x_k\}_{k=1}^{\lambda}$

The diagram also indicates:
- Probability distribution
Optimization of Vortex Decay

Evolutionary Algorithms (EAs)
- **iterative methods** operating with **populations** of candidate solutions
- Here: Covariance Matrix Adaptation - ES

- popular because of their flexibility and **robustness**
- main **disadvantage**: Need **large number of objective function evaluations**

Optimization of Vortex Decay

\[f \]
Optimization of Vortex Decay

- PRESENT
- After sweep toward large λ, moves toward smaller values
- Convergence
Optimization of Vortex Decay

- **PRESENT**
 - After sweep toward large λ, moves toward smaller values
 - Convergence
Optimization of Vortex Decay

- **PRESENT**
 - After sweep toward large λ, moves toward smaller values
 - Convergence
Optimization of Vortex Decay

- **PRESENT**
 - After sweep toward large λ, moves toward smaller values
 - Convergence
Optimization of Vortex Decay

- **PRESENT**
 - After sweep toward large λ, moves toward smaller values
- **Convergence**
- **PROBLEMS**
 - Resolution of Optimized Flows?
 - Synchronize Optimization and Numerics
Optimization of Vortex Decay

- FUNCTION LANDSCAPE
- in \((\lambda, \delta, \Gamma)\) hyperplane
- Multi-modality
- Effect of numerics?
Optimization of Vortex Decay

- FUNCTION LANDSCAPE
- in $(\lambda, \delta, \Gamma)$ hyperplane
- Multi-modality
- Effect of numerics?
Ongoing work

• Development

• **Bigger, faster:**
 Mixed MPI/SMP implementation of library
 • multicore machines: BlueGene/P

• Smarter:
 Unbounded boundary conditions

• More physical:
 Non-periodic streamwise boundary conditions
 • spatially developing wake
Conclusions

- Implementation of Vortex Particle Method on massively parallel architecture
 - Scalability
- Large-scale High Re DNS
- Coupling of DNS code with Evolutionary Strategy: Optimization of wake decay
Acknowledgements

M. Bergdorf
D. Rossinelli
S. Kern
P. Koumoutsakos
M. Gazzola
M. Quack
A. Curioni

IBM Zurich Research Center
IBM T. J. Watson Center
Swiss Super-Computing Center